Mega Dose
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Tour our stores


    Recently Viewed clear list


    Original Essays | September 30, 2014

    Brian Doyle: IMG The Rude Burl of Our Masks



    One day when I was 12 years old and setting off on my newspaper route after school my mom said will you stop at the doctor's and pick up something... Continue »

    spacer
Qualifying orders ship free.
$75.00
Used Hardcover
Ships in 1 to 3 days
Add to Wishlist
Qty Store Section
1 Burnside Mathematics- Popular Chaos and Fractals

This title in other editions

Fractal Geometry: Mathematical Foundations and Applications

by

Fractal Geometry: Mathematical Foundations and Applications Cover

 

Synopses & Reviews

Publisher Comments:

Since its original publication in 1990, Kenneth Falconer’s Fractal Geometry: Mathematical Foundations and Applicationshas become a seminal text on the mathematics of fractals. It introduces the general mathematical theory and applications of fractals in a way that is accessible to students from a wide range of disciplines. This new edition has been extensively revised and updated. It features much new material, many additional exercises, notes and references, and an extended bibliography that reflects the development of the subject since the first edition.
  • Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals.
  • Each topic is carefully explained and illustrated by examples and figures.
  • Includes all necessary mathematical background material.
  • Includes notes and references to enable the reader to pursue individual topics.
  • Features a wide selection of exercises, enabling the reader to develop their understanding of the theory.
  • Supported by a Web site featuring solutions to exercises, and additional material for students and lecturers.

Fractal Geometry: Mathematical Foundations and Applicationsis aimed at undergraduate and graduate students studying courses in fractal geometry. The book also provides an excellent source of reference for researchers who encounter fractals in mathematics, physics, engineering, and the applied sciences.

Also by Kenneth Falconer and available from Wiley:

Techniques in Fractal Geometry

ISBN 0-471-95724-0

Book News Annotation:

Provides an accessible treatment of the mathematics of fractals and their dimensions. Aimed at those wanting to use fractals in their own areas of mathematics or science. The first part covers the general theory of fractals and their geometry. The second part contains a variety of examples and applications in mathematics and physics.
Annotation c. Book News, Inc., Portland, OR (booknews.com)

Synopsis:

Fractal Geometry Mathematical Foundations and Applications Kenneth Falconer, School of Mathematics, University of Bristol, UK This book provides an accessible treatment of the mathematics of fractals and their dimensions. It is aimed at those wanting to use fractals in their own areas of mathematics or science. The first part of the book covers the general theory of fractals and their geometry. Results are stated precisely, but technical measure theoretic ideas are avoided and difficult proofs are sketched or omitted. The second part contains a variety of examples and applications in mathematics and physics.

Synopsis:

An accessible introduction to fractals, useful as a text or reference. Part I is concerned with the general theory of fractals and their geometry, covering dimensions and their methods of calculation, plus the local form of fractals and their projections and intersections. Part II contains examples of fractals drawn from a wide variety of areas of mathematics and physics, including self-similar and self-affine sets, graphs of functions, examples from number theory and pure mathematics, dynamical systems, Julia sets, random fractals and some physical applications. Also contains many diagrams and illustrative examples, includes computer drawings of fractals, and shows how to produce further drawings for themselves.

Description:

Includes bibliographical references (p. [278]-283) and index.

Table of Contents

'Preface.

Preface to the second edition.

Course suggestions.

Introduction.

Notes and references.

PART I: FOUNDATIONS.

Chapter 1: Mathematical background.

1.1 Basic set theory.

1.2 Functions and limits.

1.3 Measures and mass distributions.

1.4 Notes on probability theory.

1.5 Notes and references.

Exercises.

Chapter 2: Hausdorff measure and dimension.

2.1 Hausdorff measure.

2.2 Hausdorff dimension.

2.3 Calculation of Hausdorff dimension—simple examples.

*2.4 Equivalent definitions of Hausdorff dimension.

*2.5 Finer definitions of dimension.

2.6 Notes and references.

Exercises.

Chapter 3: Alternative definitions of dimension.

3.1 Box-counting dimensions.

3.2 Properties and problems of box-counting dimension.

*3.3 Modified box-counting dimensions.

*3.4 Packing measures and dimensions.

3.5 Some other definitions of dimension.

3.6 Notes and references.

Exercises.

Chapter 4: Techniques for calculating dimensions.

4.1 Basic methods.

4.2 Subsets of finite measure.

4.3 Potential theoretic methods.

*4.4 Fourier transform methods.

4.5 Notes and references.

Exercises.

Chapter 5: Local structure of fractals.

5.1 Densities.

5.2 Structure of 1-sets.

5.3 Tangents to s-sets.

5.4 Notes and references.

Exercises.

Chapter 6: Projections of fractals.

6.1 Projections of arbitrary sets.

6.2 Projections of s-sets of integral dimension.

6.3 Projections of arbitrary sets of integral dimension.

6.4 Notes and references.

Exercises.

Chapter 7: Products of fractals.

7.1 Product formulae.

7.2 Notes and references.

Exercises.

Chapter 8: Intersections of fractals.

8.1 Intersection formulae for fractals.

*8.2 Sets with large intersection.

8.3 Notes and references.

Exercises.

PART II: APPLICATIONS AND EXAMPLES.

Chapter 9: Iterated function systems—self-similar and self-affine sets.

9.1 Iterated function system.

9.2 Dimensions of self-similar sets.

9.3 Some variations.

9.4 Self-affine sets.

9.5 Applications to encoding images.

9.6 Notes and references.

Exercises.

Chapter 10: Examples from number theory.

10.1 Distribution of digits of numbers.

10.2 Continued fractions.

10.3 Diophantine approximation.

10.4 Notes and references.

Exercises.

Chapter 11: Graphs of functions.

11.1 Dimensions of graphs.

*11.2 Autocorrelation of fractal functions.

11.3 Notes and references.

Exercises.

Chapter 12: Examples from pure mathematics.

12.1 Duality and the Kakeya problem.

12.2 Vitushkin’s conjecture.

12.3 Convex functions.

12.4 Groups and rings of fractional dimension.

12.5 Notes and references.

Exercises.

Chapter 13: Dynamical systems.

13.1 Repellers and iterated function systems.

13.2 The logistic map.

13.3 Stretching and folding transformations.

13.4 The solenoid.

13.5 Continuous dynamical systems.

*13.6 Small divisor theory.

*13.7 Liapounov exponents and entropies.

13.8 Notes and references.

Exercises.

Chapter 14: Iteration of complex functions—Julia sets.

14.1 General theory of Julia sets.

14.2 Quadratic functions—the Mandelbrot set.

14.3 Julia sets of quadratic functions.

14.4 Characterization of quasi-circles by dimension.

14.5 Newton’s method for solving polynomial equations.

14.6 Notes and references.

Exercises.

Chapter 15: Random fractals.

15.1 A random Cantor set.

15.2 Fractal percolation.

15.3 Notes and references.

Exercises.

Chapter 16: Brownian motion and Brownian surfaces.

16.1 Brownian motion.

16.2 Fractional Brownian motion.

16.3 Lévy stable processes.

16.4 Fractional Brownian surfaces.

16.5 Notes and references.

Exercises.

Chapter 17: Multifractal measures.

17.1 Coarse multifractal analysis.

17.2 Fine multifractal analysis.

17.3 Self-similar multifractals.

17.4 Notes and references.

Exercises.

Chapter 18: Physical applications.

18.1 Fractal growth.

18.2 Singularities of electrostatic and gravitational potentials.

18.3 Fluid dynamics and turbulence.

18.4 Fractal antennas.

18.5 Fractals in finance.

18.6 Notes and references.

Exercises.

References.

Index.\n

'

Product Details

ISBN:
9780471922872
Subtitle:
Mathematical Foundations and Applications
Author:
Falconer, K. J.
Author:
Falconer, Kenneth J.
Publisher:
Wiley
Location:
Chichester ;
Subject:
Fractals
Subject:
Topology - Fractals
Subject:
Topology
Subject:
Topology - General
Subject:
Geometry - General
Subject:
Geometry, analytic
Subject:
Chaos / Fractal / Dynamical Systems
Copyright:
Series Volume:
vol. 65
Publication Date:
19900330
Binding:
Hardback
Grade Level:
General/trade
Language:
English
Illustrations:
Yes
Pages:
310
Dimensions:
9.35x6.25x1.00 in. 1.36 lbs.

Other books you might like

  1. Fractals Everywhere 2ND Edition Used Hardcover $25.00
  2. Bioinformatics the Machine Learning... New Hardcover $72.50
  3. Exploring Randomness (Discrete... New Trade Paper $118.50
  4. Order Out of Chaos Used Trade Paper $6.95
  5. London Mathematical Society Student... New Trade Paper $66.25
  6. An Introduction to Natural Computation New Trade Paper $45.75

Related Subjects

Science and Mathematics » Mathematics » General
Science and Mathematics » Mathematics » Popular Chaos and Fractals

Fractal Geometry: Mathematical Foundations and Applications Used Hardcover
0 stars - 0 reviews
$75.00 In Stock
Product details 310 pages John Wiley & Sons - English 9780471922872 Reviews:
"Synopsis" by , Fractal Geometry Mathematical Foundations and Applications Kenneth Falconer, School of Mathematics, University of Bristol, UK This book provides an accessible treatment of the mathematics of fractals and their dimensions. It is aimed at those wanting to use fractals in their own areas of mathematics or science. The first part of the book covers the general theory of fractals and their geometry. Results are stated precisely, but technical measure theoretic ideas are avoided and difficult proofs are sketched or omitted. The second part contains a variety of examples and applications in mathematics and physics.
"Synopsis" by , An accessible introduction to fractals, useful as a text or reference. Part I is concerned with the general theory of fractals and their geometry, covering dimensions and their methods of calculation, plus the local form of fractals and their projections and intersections. Part II contains examples of fractals drawn from a wide variety of areas of mathematics and physics, including self-similar and self-affine sets, graphs of functions, examples from number theory and pure mathematics, dynamical systems, Julia sets, random fractals and some physical applications. Also contains many diagrams and illustrative examples, includes computer drawings of fractals, and shows how to produce further drawings for themselves.
spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.