Special Offers see all
More at Powell'sRecently Viewed clear list 
$27.95
New Hardcover
Ships in 1 to 3 days
Will You Be Alive 10 Years from Now?: And Numerous Other Curious Questions in Probabilityby Paul J Nahin
Synopses & ReviewsPublisher Comments:What are the chances of a gameshow contestant finding a chicken in a box? Is the Hanukkah dreidel a fair game? Will you be alive ten years from now? These are just some of the oneofakind probability puzzles that acclaimed popular math writer Paul Nahin offers in this lively and informative book.
Nahin brings probability to life with colorful and amusing historical anecdotes as well as an electrifying approach to solving puzzles that illustrates many of the techniques that mathematicians and scientists use to grapple with probability. He looks at classic puzzles from the pastfrom Galileo's dicetossing problem to a disarming dice puzzle that would have astonished even Newtonand also includes a dozen challenge problems for you to tackle yourself, with complete solutions provided in the back of the book. Nahin then presents twentyfive unusual probability puzzlers that you aren't likely to find anywhere else, and which range in difficulty from ones that are easy but clever to others that are technically intricate. Each problem is accompanied by an entertaining discussion of its background and solution, and is backed up by theory and computer simulations whenever possible in order to show how theory and computer experimentation can often work together on probability questions. All the MATLAB® Monte Carlo simulation codes needed to solve the problems computationally are included in the book.With his characteristic wit, audacity, and insight, Nahin demonstrates why seemingly simple probability problems can stump even the experts. Review:"Nahin (Duelling Idiots and Other Probability Puzzlers), University of New Hampshire professor emeritus of electrical engineering, takes intrepid, mathematically minded readers on a fresh outing through the land of probability in this collection of puzzles, complete with MATLAB computer code. Nahin draws from the usual venues of probability problems, from gambling to sports, many utilizing Monte Carlo algorithms, which use random numbers to describe the behavior of dice and flipped coins. Nahin begins with the familiar 'Gambler's Ruin' problem, then branches out to consider the number of stops an elevator might make along its route, the likelihood of a proofreader missing errors, chance of false positives in medical tests, and whether the traditional dreidel game is really fair. The book isn't written for the casual browser; Nahin assumes readers will have a solid grounding in collegelevel mathematics as well as basic probability and some computer programming, if not knowledge of the MATLAB software package. For those who have the prerequisites, the author offers a pleasant collection of brainteasers on which to test their mettle. 28 line illus., 22 tables." Publishers Weekly Copyright PWxyz, LLC. All rights reserved.
Synopsis:"Readers of this absorbing book will gain significant pleasure as well as a broadened understanding of the nuances of mathematics, along with a wonderful picture of how analytics and simulations complement each other. Nahin is a master at this. I love this book!"Joseph Mazur, author of What's Luck Got to Do with It?: The History, Mathematics, and Psychology of the Gambler's Illusion
"This book will be of interest to anyone who loves the challenge and surprise inherent in probability theory, and who likes to tinker with their computer as a simulator. Nahin's style is easy and informal."Julian Havil, author of The Irrationals: A Story of the Numbers You Can't Count On About the AuthorPaul J. Nahin is professor emeritus of electrical engineering at the University of New Hampshire. He is the bestselling author of many popularmath books, including "Duelling Idiots and Other Probability Puzzlers", "The Logician and the Engineer", "NumberCrunching", "Mrs. Perkins's Electric Quilt", and "An Imaginary Tale" (all Princeton).
Table of ContentsPreface xv
Introduction: Classic Puzzles from the Past 1 I.1 A Gambling Puzzle of Gombaud and Pascal 1 I.2 Galileo's Dice Problem 3 I.3 Another GombaudPascal Puzzle 4 I.4 Gambler's Ruin and De Moivre 6 I.5 Monte Carlo Simulation of Gambler's Ruin 10 I.6 Newton's Probability Problem 13 I.7 A Dice Problem That Would Have Surprised Newton 17 I.8 A CoinFlipping Problem 18 I.9 Simpson's Paradox, RadioDirection Finding, and the Spaghetti Problem 21 Challenge Problems 30 1 Breaking Sticks 36 1.1 The Problem 36 1.2 Theoretical Analysis 36 1.3 Computer Simulation 38 2 The Twins 42 2.1 The Problem 42 2.2 Theoretical Analysis 43 2.3 Computer Simulation 44 3 Steve's Elevator Problem 47 3.1 The Problem 47 3.2 Theoretical Analysis by Shane Henderson 48 3.3 Computer Simulation 51 4 Three Gambling Problems Newton Would "Probably" Have Liked 52 4.1 The Problems 52 4.2 Theoretical Analysis 1 54 4.3 Computer Simulation 1 55 4.4 Theoretical Analysis 2 57 4.5 Computer Simulation 2 58 4.6 Theoretical Analysis 3 59 5 Big QuotientsPart 1 62 5.1 The Problem 62 5.2 Theoretical Analysis 62 5.3 Computer Simulation 64 6 Two Ways to Proofread 66 6.1 The Problem 66 6.2 Theoretical Analysis 67 7 Chain Letters That Never End 70 7.1 The Problem 70 7.2 Theoretical Analysis 70 8 Bingo Befuddlement 74 8.1 The Problem 74 8.2 Computer Simulation 75 9 Is Dreidel Fair? 79 9.1 The Problem 79 9.2 Computer Simulation 80 10 Hollywood Thrills 83 10.1 The Problem 83 10.2 Theoretical Analysis 83 11 The Problem of the nLiars 87 11.1 The Problem 87 11.2 Theoretical Analysis 87 11.3 Computer Simulation 89 12 The Inconvenience of a Law 90 12.1 The Problem 90 12.2 Theoretical Analysis 90 13 A Puzzle for When the Super Bowl is a Blowout 93 13.1 The Problem 93 13.2 Theoretical Analysis 94 14 Darts and Ballistic Missiles 96 14.1 The Problem 96 14.2 Theoretical Analysis 97 15 Blood Testing 103 15.1 The Problem 103 15.2 Theoretical Analysis 103 16 Big QuotientsPart 2 107 16.1 The Problem 107 16.2 Theoretical Analysis 107 17 To Test or Not to Test? 117 17.1 The Problem 117 17.2 Theoretical Analysis 119 18 Average Distances on a Square 126 18.1 The Problem(s) 126 18.2 Theoretical Analyses 127 18.3 Computer Simulations 136 19 When Will the Last One Fail? 139 19.1 The Problem 139 19.2 Theoretical Analyses 142 20 Who's Ahead? 147 20.1 The Problem 147 20.2 Theoretical Analysis 148 21 Plum Pudding 151 21.1 The Problem 151 21.2 Computer Simulation 152 21.3 Theoretical Analysis 153 22 PingPong, Squash, and Difference Equations 156 22.1 PingPong Math 156 22.2 Squash Math Is Harder! 161 23 Will You Be Alive 10 Years from Now? 168 23.1 The Problem 168 23.2 Theoretical Analysis 169 24 Chickens in Boxes 176 24.1 The Problem (and Some Warmups, Too) 176 24.2 Theoretical Analysis 180 25 Newcomb's Paradox 183 25.1 Some History 183 25.2 Decision Principles in Conflict 186 Challenge Problem Solutions 189 Technical Note on MATLAB®'s Random Number Generator 213 Acknowledgments 217 Index 219 What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Related Subjects
Featured Titles » New Arrivals » Nonfiction


