Poetry Madness
 
 

Recently Viewed clear list


Interviews | March 17, 2014

Shawn Donley: IMG Peter Stark: The Powells.com Interview



Peter StarkIt's hard to believe that 200 years ago, the Pacific Northwest was one of the most remote and isolated regions in the world. In 1810, four years... Continue »
  1. $19.59 Sale Hardcover add to wish list

spacer
Qualifying orders ship free.
$99.25
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
25 Remote Warehouse Mechanical Engineering- General

This title in other editions

Engineering Mechanics: Volume 2: Stresses, Strains, Displacements

by

Engineering Mechanics: Volume 2: Stresses, Strains, Displacements Cover

 

Synopses & Reviews

Publisher Comments:

This work treats structural and continuum mechanics in a unified and consistent manner.Analytical and graphical methods are given equal emphasis to account for the contemporary requirements of computer applications on one hand, and visualization and insight on the other hand. Therefore, all theoretical developments are presented both in the text and by means of an extensive set of figures. Text and figures complement each other, and this twofold presentation is also used in the examples. In the same spirit, both formal and intuitive (engineering) arguments are used in parallel to derive the principles used for instance in Bending Moment diagrams and Shear Stress diagrams. Importantly, sign conventions for member forces are related to the stress definitions of continuum mechanics and then applied consistently throughout the series.

Synopsis:

This work treats structural and continuum mechanics in a unified and consistent manner.

 

Synopsis:

Here is a systematic and clearly laid out text on structural and continuum mechanics. Containing hundreds of diagrams, drawings and examples, this work dovetails theoretical developments and figures in a beautifully conceived treatment of the subject. The book also covers stresses and strains in simple elements subjected to extension, bending, shear and torsion. For elementary structures, simple load displacements are obtained using both classical mathematics descriptions and engineering methods like Williot diagrams.

Synopsis:

This work treats structural and continuum mechanics in a unified and consistent manner. All theoretical developments are presented both in the text and by means of an extensive set of figures. Text and figures complement each other, and this twofold presentation is also used in the examples. Volume 2 covers stresses and strains in simple elements subjected to extension, bending, shear and torsion. For elementary structures like trusses, beams and frames, displacements due to simple loads are obtained using both classical mathematical descriptions with differential equations and engineering methods like Williot diagrams for (simple) trusses and "forget-me-nots" and moment-area formulae for bending.

Table of Contents

Preface; Foreword; 1 Material Behaviour; 1.1 Tensile test; 1.2 Stress-strain diagrams; 1.3 Hooke's Law; 2 Bar Subject to Extension; 2.1 The fibre model; 2.2 The three basic relationships; 2.3 Strain diagram and normal stress diagram; 2.4 Normal centre and bar axis; 2.5 Mathematical description of the extension problem; 2.6 Examples relating to change in length and displacement; 2.7 Examples relating to the differential equation for extension; 2.8 Formal approach and engineering practice; 2.9 Problems; 3 Cross-Sectional Properties; 3.1 First moments of area; centroid and normal centre; 3.2 Second moments of area; 3.3 Thin-walled cross-sections; 3.4 Formal approach and engineering practice; 3.5 Problems; 4 Members Subject to Bending and Extension; 4.1 The fibre model; 4.2 Strain diagram and neutral axis; 4.3 The three basic relationships; 4.4 Stress formula and stress diagram; 4.5 Examples relating to the stress formula for bending with extension; 4.6 Section modulus; 4.7 Examples of the stress formula related to bending without extension; 4.8 General stress formula related to the principal directions; 4.9 Core of the cross-section; 4.10 Applications related to the core of the cross-section; 4.11 Mathematical description of the problem of bending with extension; 4.12 Thermal effects; 4.13 Notes for the fibre model and summary of the formulas; 4.14 Problems; 5 Shear Forces and Shear Stresses Due to Bending; 5.1 Shear forces and shear stresses in longitudinal direction; 5.2 Examples relating to shear forces and shear stresses in the longitudinal direction; 5.3 Shear stresses on a cross-sectional plane; 5.4 Examples relating to the shear stress distribution in a cross-section; 5.5 Shear centre; 5.6 Other cases of shear; 5.7 Summary of the formulas and rules; 5.8 Problems; 6 Bar Subject to Torsion; 6.1 Material behaviour in shear; 6.2 Torsion of bars with circular cross-section; 6.3 Torsion of thin-walled cross-sections; 6.4 Numerical examples; 6.5 Summary of the formulas; 6.6 Problems; 7 Deformation of Trusses; 7.1 The behaviour of a single truss member; 7.2 Williot diagram; 7.3 Williot diagram with rigid-body rotation; 7.4 Williot--Mohr diagram; 7.5 Problems; 8 Deformation Due to Bending; 8.1 Direct determination from the moment distribution; 8.2 Differential equation for bending; 8.3 Forget-me-nots; 8.4 Moment area theorems; 8.5 Simply supported beams and the M/EI diagram; 8.6 Problems; 9 Unsymmetrical and Inhomogeneous Cross-Sections; 9.1 Sketch of the problems and required assumptions; 9.2 Kinematic relationships; 9.3 Curvature and neutral axis; 9.4 Normal force and bending moments — centre of force; 9.5 Constitutive relationships for unsymmetrical and/or inhomogeneous cross-sections; 9.6 Plane of loading and plane of curvature — neutral axis; 9.7 The normal centre NC for inhomogeneous cross-sections; 9.8 Stresses due to extension and bending — a straightforward method; 9.9 Applications of the straightforward method; 9.10 Stresses in the principal coordinate method — alternative method; 9.11 Transformation formulae for the bending stiffness tensor; 9.12 Application of the alternative method based on the principal directions; 9.13 Displacements due to bending; 9.14 Maxwell's reciprocal theorem; 9.15 Core of a cross-section; 9.16 Thermal effects; 9.17 Shear flow and shear stresses in arbitrary cross-sections; 9.18 Problems; Index.

Product Details

ISBN:
9781402041235
Author:
Hartsuijker, C.
Publisher:
Springer
Author:
Welleman, J. W.
Location:
Dordrecht
Subject:
Engineering - Mechanical
Subject:
Mechanical
Subject:
Mechanical Engineering-General
Subject:
bending and extension
Subject:
deflection of beams
Subject:
forces and displacements of trusses
Subject:
stresses and strains in beams
Subject:
Textbook
Subject:
Torsion
Subject:
Theoretical and Applied Mechanics
Subject:
Continuum Mechanics and Mechanics of Materials
Subject:
Structural Mechanics
Subject:
Engineering
Subject:
The Arts
Subject:
Mechanics, applied
Subject:
Materials
Subject:
Mechanical engineering
Copyright:
Edition Number:
1
Edition Description:
Book
Series:
Engineering Mechanics
Series Volume:
1531
Publication Date:
August 2006
Binding:
HARDCOVER
Language:
English
Illustrations:
Y
Pages:
896
Dimensions:
240 x 160 mm

Related Subjects

Engineering » Construction » Structural Design Theory
Engineering » Mechanical Engineering » General
History and Social Science » Linguistics » Specific Languages and Groups
Reference » Words Phrases and Language

Engineering Mechanics: Volume 2: Stresses, Strains, Displacements New Hardcover
0 stars - 0 reviews
$99.25 In Stock
Product details 896 pages Springer - English 9781402041235 Reviews:
"Synopsis" by , This work treats structural and continuum mechanics in a unified and consistent manner.

 

"Synopsis" by , Here is a systematic and clearly laid out text on structural and continuum mechanics. Containing hundreds of diagrams, drawings and examples, this work dovetails theoretical developments and figures in a beautifully conceived treatment of the subject. The book also covers stresses and strains in simple elements subjected to extension, bending, shear and torsion. For elementary structures, simple load displacements are obtained using both classical mathematics descriptions and engineering methods like Williot diagrams.
"Synopsis" by , This work treats structural and continuum mechanics in a unified and consistent manner. All theoretical developments are presented both in the text and by means of an extensive set of figures. Text and figures complement each other, and this twofold presentation is also used in the examples. Volume 2 covers stresses and strains in simple elements subjected to extension, bending, shear and torsion. For elementary structures like trusses, beams and frames, displacements due to simple loads are obtained using both classical mathematical descriptions with differential equations and engineering methods like Williot diagrams for (simple) trusses and "forget-me-nots" and moment-area formulae for bending.
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.