Magnificent Marvel Supersale

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to
for a chance to win.
Privacy Policy

Visit our stores

    Recently Viewed clear list

    Beyond the Headlines | March 6, 2015

    Rhianna Walton: IMG Beyond the Headlines: How to Visit Cuba

    Ever since President Obama's December announcement that the United States is resuming full diplomatic ties with Cuba, the Powell's buyers' office... Continue »

Qualifying orders ship free.
New Trade Paper
Ships in 1 to 3 days
Add to Wishlist
Qty Store Section

Hadoop: The Definitive Guide


Hadoop: The Definitive Guide Cover


Synopses & Reviews

Publisher Comments:

Ready to unlock the power of your data? With this comprehensive guide, youll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters.

Youll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN).

  • Store large datasets with the Hadoop Distributed File System (HDFS)
  • Run distributed computations with MapReduce
  • Use Hadoops data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence
  • Discover common pitfalls and advanced features for writing real-world MapReduce programs
  • Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud
  • Load data from relational databases into HDFS, using Sqoop
  • Perform large-scale data processing with the Pig query language
  • Analyze datasets with Hive, Hadoops data warehousing system
  • Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems

About the Author

Tom White has been an Apache Hadoop committer since February 2007, and is a member of the Apache Software Foundation. He works for Cloudera, a company set up to offer Hadoop support and training. Previously he was as an independent Hadoop consultant, working with companies to set up, use, and extend Hadoop. He has written numerous articles for O'Reilly, and IBM's developerWorks, and has spoken at several conferences, including at ApacheCon 2008 on Hadoop. Tom has a Bachelor's degree in Mathematics from the University of Cambridge and a Master's in Philosophy of Science from the University of Leeds, UK.

Table of Contents

Foreword; Preface; Administrative Notes; What's in This Book?; What's New in the Second Edition?; What's New in the Third Edition?; Conventions Used in This Book; Using Code Examples; Safari® Books Online; How to Contact Us; Acknowledgments; Chapter 1: Meet Hadoop; 1.1 Data!; 1.2 Data Storage and Analysis; 1.3 Comparison with Other Systems; 1.4 A Brief History of Hadoop; 1.5 Apache Hadoop and the Hadoop Ecosystem; 1.6 Hadoop Releases; Chapter 2: MapReduce; 2.1 A Weather Dataset; 2.2 Analyzing the Data with Unix Tools; 2.3 Analyzing the Data with Hadoop; 2.4 Scaling Out; 2.5 Hadoop Streaming; 2.6 Hadoop Pipes; Chapter 3: The Hadoop Distributed Filesystem; 3.1 The Design of HDFS; 3.2 HDFS Concepts; 3.3 The Command-Line Interface; 3.4 Hadoop Filesystems; 3.5 The Java Interface; 3.6 Data Flow; 3.7 Data Ingest with Flume and Sqoop; 3.8 Parallel Copying with distcp; 3.9 Hadoop Archives; Chapter 4: Hadoop I/O; 4.1 Data Integrity; 4.2 Compression; 4.3 Serialization; 4.4 Avro; 4.5 File-Based Data Structures; Chapter 5: Developing a MapReduce Application; 5.1 The Configuration API; 5.2 Setting Up the Development Environment; 5.3 Writing a Unit Test with MRUnit; 5.4 Running Locally on Test Data; 5.5 Running on a Cluster; 5.6 Tuning a Job; 5.7 MapReduce Workflows; Chapter 6: How MapReduce Works; 6.1 Anatomy of a MapReduce Job Run; 6.2 Failures; 6.3 Job Scheduling; 6.4 Shuffle and Sort; 6.5 Task Execution; Chapter 7: MapReduce Types and Formats; 7.1 MapReduce Types; 7.2 Input Formats; 7.3 Output Formats; Chapter 8: MapReduce Features; 8.1 Counters; 8.2 Sorting; 8.3 Joins; 8.4 Side Data Distribution; 8.5 MapReduce Library Classes; Chapter 9: Setting Up a Hadoop Cluster; 9.1 Cluster Specification; 9.2 Cluster Setup and Installation; 9.3 SSH Configuration; 9.4 Hadoop Configuration; 9.5 YARN Configuration; 9.6 Security; 9.7 Benchmarking a Hadoop Cluster; 9.8 Hadoop in the Cloud; Chapter 10: Administering Hadoop; 10.1 HDFS; 10.2 Monitoring; 10.3 Maintenance; Chapter 11: Pig; 11.1 Installing and Running Pig; 11.2 An Example; 11.3 Comparison with Databases; 11.4 Pig Latin; 11.5 User-Defined Functions; 11.6 Data Processing Operators; 11.7 Pig in Practice; Chapter 12: Hive; 12.1 Installing Hive; 12.2 An Example; 12.3 Running Hive; 12.4 Comparison with Traditional Databases; 12.5 HiveQL; 12.6 Tables; 12.7 Querying Data; 12.8 User-Defined Functions; Chapter 13: HBase; 13.1 HBasics; 13.2 Concepts; 13.3 Installation; 13.4 Clients; 13.5 Example; 13.6 HBase Versus RDBMS; 13.7 Praxis; Chapter 14: ZooKeeper; 14.1 Installing and Running ZooKeeper; 14.2 An Example; 14.3 The ZooKeeper Service; 14.4 Building Applications with ZooKeeper; 14.5 ZooKeeper in Production; Chapter 15: Sqoop; 15.1 Getting Sqoop; 15.2 Sqoop Connectors; 15.3 A Sample Import; 15.4 Generated Code; 15.5 Imports: A Deeper Look; 15.6 Working with Imported Data; 15.7 Importing Large Objects; 15.8 Performing an Export; 15.9 Exports: A Deeper Look; Chapter 16: Case Studies; 16.1 Hadoop Usage at; 16.2 Hadoop and Hive at Facebook; 16.3 Nutch Search Engine; 16.4 Log Processing at Rackspace; 16.5 Cascading; 16.6 TeraByte Sort on Apache Hadoop; 16.7 Using Pig and Wukong to Explore Billion-edge Network Graphs; Installing Apache Hadoop; Prerequisites; Installation; Configuration; Cloudera's Distribution Including Apache Hadoop; Preparing the NCDC Weather Data; Colophon;

Product Details

White, Tom
Yahoo Press
Programming / Parallel
Computers-Reference - General
avro;cloud;cloud computing;cluster;database;distributed computing;google;hadoop;hbase;hfs;hive;java;mapreduce;security;sqoop;zookeeper
CourseSmart Subject Description
Edition Description:
Third Edition
Publication Date:
9.19 x 7 in

Other books you might like

  1. Programming Hive New Open eBook $33.99
  2. Mahout in Action Used Trade Paper $25.00

Related Subjects

Computers and Internet » Computer Languages » Java
Computers and Internet » Computers Reference » General
Computers and Internet » Internet » Apache
Computers and Internet » Internet » Servers
Computers and Internet » Software Engineering » General
Computers and Internet » Software Engineering » Programming and Languages
History and Social Science » Politics » General
Science and Mathematics » Mathematics » General

Hadoop: The Definitive Guide New Trade Paper
0 stars - 0 reviews
$49.99 In Stock
Product details 688 pages O'Reilly Media - English 9781449311520 Reviews:
  • back to top


Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at