The Good, the Bad, and the Hungry Sale
 
 

Recently Viewed clear list


Original Essays | June 20, 2014

Lauren Owen: IMG The Other Vampire



It's a wild and thundery night. Inside a ramshackle old manor house, a beautiful young girl lies asleep in bed. At the window, a figure watches... Continue »

spacer
Qualifying orders ship free.
$44.99
New Trade Paper
Ships in 1 to 3 days
Add to Wishlist
Qty Store Section
2 Burnside - Bldg. 2 Internet- Apache
7 Local Warehouse Computer Languages- Java
3 Remote Warehouse Computer Languages- Java

Mahout in Action

by

Mahout in Action Cover

 

Synopses & Reviews

Publisher Comments:

Summary

Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology

A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book

This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework.

This book is written for developers familiar with Java — no prior experience with Mahout is assumed.

Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside

  • Use group data to make individual recommendations
  • Find logical clusters within your data
  • Filter and refine with on-the-fly classification
  • Free audio and video extras
Table of Contents
  1. Meet Apache Mahout
  2. PART 1 RECOMMENDATIONS
  3. Introducing recommenders
  4. Representing recommender data
  5. Making recommendations
  6. Taking recommenders to production
  7. Distributing recommendation computations
  8. PART 2 CLUSTERING
  9. Introduction to clustering
  10. Representing data
  11. Clustering algorithms in Mahout
  12. Evaluating and improving clustering quality
  13. Taking clustering to production
  14. Real-world applications of clustering
  15. PART 3 CLASSIFICATION
  16. Introduction to classification
  17. Training a classifier
  18. Evaluating and tuning a classifier
  19. Deploying a classifier
  20. Case study: Shop It To Me

Synopsis:

"Algorithms of the Intelligent Web" is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the Web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites.

Synopsis:

Web 2.0 applications provide a rich user experience, but the parts you can't see are just as important-and impressive. They use powerful techniques to process information intelligently and offer features based on patterns and relationships in data. Algorithms of the Intelligent Web shows readers how to use the same techniques employed by household names like Google Ad Sense, Netflix, and Amazon to transform raw data into actionable information.

Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites. See how click-trace analysis can result in smarter ad rotations. All the examples are designed both to be reused and to illustrate a general technique- an algorithm-that applies to a broad range of scenarios.

As they work through the book's many examples, readers learn about recommendation systems, search and ranking, automatic grouping of similar objects, classification of objects, forecasting models, and autonomous agents. They also become familiar with a large number of open-source libraries and SDKs, and freely available APIs from the hottest sites on the internet, such as Facebook, Google, eBay, and Yahoo.

Synopsis:

When computers harness prior experience to improve future performance, a type of artificial intelligence called machine learning has been applied. The Apache Mahout project is focused on three types of machine learning that are of particular interest to modern web developers "recommendation systems, classification, and clustering.

Through real-world examples, Mahout in Action introduces the sorts of problems that these techniques are appropriate for, and then illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability, and how to apply these techniques at very large scale with the Apache Hadoop framework.

About the Author

Sean Owen has been a practicing software engineer for 9 years, most recently at Google, where he helped build and launch Mobile Web search. He joined Apache's Mahout machine learning project in 2008 as a primary committer and works as a Mahout consultant.

Robin Anil joined Apache's Mahout project as a Google Summer of Code student in 2008 and contributed to the Classifier and Frequent Pattern Mining packages with algorithms that run on the Hadoop Map/Reduce platform. Since 2009, he has been a committer at Mahout and works as a full-time Software Engineer at Google.

Product Details

ISBN:
9781935182689
Author:
Owen, Sean
Publisher:
Manning Publications
Author:
Anil, Robin
Author:
Babenko, Dmitry
Author:
Marmanis, Haralambos
Author:
Dunning, Ted
Author:
Friedman, Ellen
Subject:
Programming Languages - Java
Subject:
Computer Languages-Java
Subject:
algorithms;apache;data mining;java;machine-learning;open-source
Copyright:
Edition Description:
Trade Paper
Publication Date:
20111031
Binding:
TRADE PAPER
Language:
English
Pages:
416
Dimensions:
9.25 x 7.38 in

Other books you might like

  1. Programming Hive New Open eBook $33.99
  2. Hadoop: The Definitive Guide Used Trade Paper $14.95

Related Subjects

» Computers and Internet » Computer Languages » Java
» Computers and Internet » Internet » Apache
» Computers and Internet » Internet » Servers
» Reference » Science Reference » General

Mahout in Action New Trade Paper
0 stars - 0 reviews
$44.99 In Stock
Product details 416 pages Manning Publications - English 9781935182689 Reviews:
"Synopsis" by ,
"Algorithms of the Intelligent Web" is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the Web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites.

"Synopsis" by ,

Web 2.0 applications provide a rich user experience, but the parts you can't see are just as important-and impressive. They use powerful techniques to process information intelligently and offer features based on patterns and relationships in data. Algorithms of the Intelligent Web shows readers how to use the same techniques employed by household names like Google Ad Sense, Netflix, and Amazon to transform raw data into actionable information.

Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites. See how click-trace analysis can result in smarter ad rotations. All the examples are designed both to be reused and to illustrate a general technique- an algorithm-that applies to a broad range of scenarios.

As they work through the book's many examples, readers learn about recommendation systems, search and ranking, automatic grouping of similar objects, classification of objects, forecasting models, and autonomous agents. They also become familiar with a large number of open-source libraries and SDKs, and freely available APIs from the hottest sites on the internet, such as Facebook, Google, eBay, and Yahoo.

"Synopsis" by ,

When computers harness prior experience to improve future performance, a type of artificial intelligence called machine learning has been applied. The Apache Mahout project is focused on three types of machine learning that are of particular interest to modern web developers "recommendation systems, classification, and clustering.

Through real-world examples, Mahout in Action introduces the sorts of problems that these techniques are appropriate for, and then illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability, and how to apply these techniques at very large scale with the Apache Hadoop framework.

spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.