 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$61.25
New Hardcover
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
More copies of this ISBNThis title in other editionsOther titles in the Undergraduate Texts in Mathematics series:
The Four Pillars of Geometryby John Stillwell
Synopses & ReviewsPublisher Comments:For two millennia the right way to teach geometry was the Euclidean approach, and in many respects, this is still the case. But in the 1950s the cry "Down with triangles!" was heard in France and new geometry books appeared, packed with linear algebra but with no diagrams. Was this the new right approach? Or was the right approach still something else, perhaps transformation groups? The Four Pillars of Geometry approaches geometry in four different ways, spending two chapters on each. This makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic. Not only does each approach offer a different view; the combination of viewpoints yields insights not available in most books at this level. For example, it is shown how algebra emerges from projective geometry, and how the hyperbolic plane emerges from the real projective line. The author begins with Euclidstyle construction and axiomatics, then proceeds to linear algebra when it becomes convenient to replace tortuous arguments with simple calculations. Next, he uses projective geometry to explain why objects look the way they do, as well as to explain why geometry is entangled with algebra. And lastly, the author introduces transformation groupsnot only to clarify the differences between geometries, but also to exhibit geometries that are unexpectedly the same. All readers are sure to find something new in this attractive text, which is abundantly supplemented with figures and exercises. This book will be useful for an undergraduate geometry course, a capstone course, or a course aimed at future high school teachers. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
Synopsis:This book is unique in that it looks at geometry from 4 different viewpoints  Euclidstyle axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Synopsis:This new textbook demonstrates that geometry can be developed in four fundamentally different ways, and that all should be used if the subject is to be shown in all its splendor. Euclidstyle construction and axiomatics seem the best way to start, but linear algebra smooths the later stages by replacing some tortuous arguments by simple calculations. And how can one avoid projective geometry? It not only explains why objects look the way they do; it also explains why geometry is entangled with algebra. Finally, one needs to know that there is not one geometry, but many, and transformation groups are the best way to distinguish between them. In this book, two chapters are devoted to each approach, the first being concrete and introductory, while the second is more abstract.Geometry, of all subjects, should be about taking different viewpoints, and geometry is unique among mathematical disciplines in its ability to look different from different angles. Some students prefer to visualize, while others prefer to reason or to calculate. Geometry has something for everyone, and students will find themselves building on their strengths at times, and working to overcome weaknesses at other times. This book will be suitable for a second course in geometry and contains more than 100 figures, and a large selection of exercises in each chapter.
Table of ContentsPreface. Straightedge and compass. Euclid's approach to geometry. Coordinates. Vectors and Euclidean spaces. Perspective. Projective planes. Transformations. NonEuclidean geometry. References. Index.
What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated Subjects
Computers and Internet » Networking » General


