Summer Reading Sale
 
 

Recently Viewed clear list


Original Essays | July 22, 2014

Nick Harkaway: IMG The Florist-Assassins



The three men lit up in my mind's eye, with footnotes. They were converging on me — and on the object I was carrying — in a way that had... Continue »
  1. $18.87 Sale Hardcover add to wish list

    Tigerman

    Nick Harkaway 9780385352413

spacer

On Order

$196.95
New Hardcover
Currently out of stock.
Add to Wishlist
available for shipping or prepaid pickup only
Qty Store Section
- Local Warehouse Materials Science- General

This title in other editions

Practical Methods for Biocatalysis and Biotransformations

by

Practical Methods for Biocatalysis and Biotransformations Cover

 

Synopses & Reviews

Publisher Comments:

Biocatalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech enzymes and whole cell biocatalysts, which add enormously to the repertoire of synthetic possibilities.

Practical Methods for Biocatalysis and Biotransformations is a “how-to” guide focussing on commercially available enzymes and strains of microorganisms that are readily obtained from culture collections. The source of starting materials and reagents, hints, tips and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given and relevant references to the primary literature are cited. Contents include:

  • Introduction to the application of biocatalysts in the pharma industry
  • introduction to molecular biological techniques for biocatalyst development
  • Lipase and protease methods including enzyme supports and dynamic kinetic resolutions
  • Nitrile hydrolases and hydratases
  • Alcohol dehydrogenases and co-factor recycling
  • Epoxide hydrolases
  • Amino acid synthesis
  • Whole cell processes
  • Other biocatalysts, including monoamineoxidases, aminotransterases, and lyases

Practical Methods for Biocatalysis and Biotransformations is an essential text offering validated biocatalyst methods for researchers and postgraduate students in industry and academia.

Book News Annotation:

Building on Stan Roberts' work on the use of biotransformations in synthetic organic chemistry presented in Preparative Biotransformations (Wiley, 1999), Whittall (Manchester Interdisciplinary Biocentre, U. of Manchester, UK) and Sutton (synthetic chemistry, GlaxoSmithKline R&D Ltd., UK) provide postgraduate students and researchers in academia and industry with sufficient information to be able to select an appropriate biocatalytic or biotransformation method to carry out a desired biotransformation. International contributors to a dozen chapters review biotransformation from the perspective of a major pharmaceutical company and the basics of molecular biology for nonspecialists, then describe key biocatalysts (e.g., lipases, proteases, sulfatases, hydroxal nitrile lyases) and their applications in the resolution of interesting molecules such as drug metabolites. The text includes reproducible protocols utilizing commercially- available enzymes and microorganisms from culture collections. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)

Synopsis:

Practical Methods for Biocatalysis and Biotransformations is a “how-to” guide focusing on commercially available enzymes and strains of microorganisms that are readily obtained from culture collections. The source of starting materials and reagents, hints, tips, and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given, and relevant references to the primary literature are cited. Practical Methods for Biocatalysis and Biotransformations is an essential text offering validated biocatalyst methods for researchers and postgraduate students in industry and academia.

About the Author

John Whittall

CoEBio3, Manchester Interdisciplinary Biocentre, Manchester University, UK

Peter W Sutton

GlaxoSmithKline Research and Development Limited, UK

Table of Contents

Preface.

Abbreviations.

List of Contributors.

1 Biotransformations in Small-molecule Pharmaceutical Development (Joseph P. Adams, Andrew J. Collis, Richard K. Henderson and Peter W. Sutton).

2 Biocatalyst Identification and Scale-up: Molecular Biology for Chemists (Kathleen H. McClean).

3 Kinetic Resolutions Using Biotransformations.

3.1 Stereo- and Enantio-selective Hydrolysis of rac-2-Octylsulfate Using Whole Resting Cells of Pseudomonas spp. (Petra Gadler and Kurt Faber).

3.2 Protease-catalyzed Resolutions Using the 3-(3-Pyridine)propionyl Anchor Group: p-Toluenesulfonamide (Christopher K. Savile and Romas J. Kazlauskas).

3.3 Desymmetrization of Prochiral Ketones Using Enzymes (Andrew J. Carnell).

3.4 Enzymatic Resolution of 1-Methyl-tetrahydroisoquinoline using Candida rugosa Lipase (Gary Breen).

4 Dynamic Kinetic Resolution for the Synthesis of Esters, Amides and Acids Using Lipases.

4.1 Dynamic Kinetic Resolution of 1-Phenylethanol by Immobilized Lipase Coupled with In Situ Racemization over Zeolite Beta (Kam Loon Fow, Yongzhong Zhu, Gaik Khuan Chuah and Stephan Jaenicke).

4.2 Synthesis of the (R)-Butyrate Esters of Secondary Alcohols by Dynamic Kinetic Resolution Employing a Bis(tetrafluorosuccinato)-bridged Ru(II) Complex (S.F.G.M. van Nispen, J. van Buijtenen, J.A.J.M. Vekemans, J. Meuldijk and L.A. Hulshof).

4.3 Dynamic Kinetic Resolution 6,7-Dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline (Michael Page, John Blacker and Matthew Stirling).

4.4 Dynamic Kinetic Resolution of Primary Amines with a Recyclable Palladium Nanocatalyst (Pd/AlO(OH)) for Racemization (Soo-Byung Ko, Mahn-Joo Kim and Jaiwook Park).

4.5 Dynamic Kinetic Resolution of Amines Involving Biocatalysis and In Situ Free-radical-mediated Racemization (Stéphane Gastaldi, Ge´rard Gil and Miche`le P. Bertrand).

4.6 Chemoenzymatic Dynamic Kinetic Resolution of (S)-Ibuprofen (A.H. Kamaruddin and F. Hamzah).

4.7 Dynamic Kinetic Resolution Synthesis of a Fluorinated Amino Acid Ester Amide by a Continuous Process Lipase-mediated Ethanolysis of an Azalactone (Matthew Truppo, David Pollard, Jeffrey Moore and Paul Devine).

5 Enzymatic Selectivity in Synthetic Methods.

5.1 Alcalase-catalysed Syntheses of Hydrophilic Di- and Tri-peptides in Organic Solvents (Xue-Zhong Zhang, Rui-Zhen Hou, Li Xu and Yi-Bing Huang).

5.2 Selective Alkoxycarbonylation of 1,25-Dihydroxyvitamin D3 Diol Precursor with Candida antarctica Lipase B (Miguel Ferrero, Susana Fernández and Vicente Gotor).

5.3 The Use of Lipase Enzymes for the Synthesis of Polymers and Polymer Intermediates (Alan Taylor).

5.4 Bioconversion of 3-Cyanopyridine into Nicotinic Acid with Gordona terrae NDB1165 (Tek Chand Bhalla).

5.5 Enzyme-promoted Desymmetrization of Prochiral Dinitriles (Marloes A. Wijdeven, Piotr Kiełbasin´ski and Floris P.J.T. Rutjes).

5.6 Epoxide Hydrolase-catalyzed Synthesis of (R)-3-Benzyloxy-2-methylpropane-1,2-diol (Takeshi Sugai, Aya Fujino, Hitomi Yamaguchi and Masaya Ikunaka).

5.7 One-pot Biocatalytic Synthesis of Methyl (S)-4-Chloro-3-hydroxybutanoate and Methyl (S)-4-Cyano-3-hydroxybutanoate (Maja Majeric´ Elenkov, Lixia Tang, Bernhard Hauer and Dick B. Janssen).

6 Aldolase Enzymes for Complex Synthesis.

6.1 One-step Synthesis of L-Fructose Using Rhamnulose-1-phosphate Aldolase in Borate Buffer (William A. Greenberg and Chi-Huey Wong).

6.2 Straightforward Fructose-1,6-bisphosphate Aldolase-mediated Synthesis of Aminocyclitols (Marielle Lemaire and Lahssen El Blidi).

6.3 Synthesis of D-Fagomine by Aldol Addition of Dihydroxyacetone to N-Cbz-3-Aminopropanal CatalysedbyD-Fructose-6-phosphateAldolase (José A. Castillo, Teodor Parella, Tomoyuki Inoue, Georg A. Sprenger, Jesu´s Joglar and Pere Clapés).

6.4 Chemoenzymatic Synthesis of 5-Thio-D-xylopyranose (Franck Charmantray, Philippe Dellis, Virgil He´laine, Soth Samreth and Laurence Hecquet).

7 Enzymatic Synthesis of Glycosides and Glucuronides.

7.1 Glycosynthase-assisted Oligosaccharide Synthesis (Adrian Scaffidi and Robert V. Stick).

7.2 Glycosyl Azides: Novel Substrates for Enzymatic Transglycosylations (ladimír Krˇen and Pavla Bojarová).

7.3 Facile Synthesis of Alkyl -D-Glucopyranosides from D-Glucose and the Corresponding Alcohols Using Fruit Seed Meals (Wen-Ya Lu, Guo-Qiang Lin, Hui-Lei Yu, Ai-Ming Tong and Jian-He Xu).

7.4 Laccase-mediated Oxidation of Natural Glycosides (Cosimo Chiriví, Francesca Sagui and Sergio Riva).

7.5 Biocatalysed Synthesis of Monoglucuronides of Hydroxytyrosol, Tyrosol, Homovanillic Alcohol and 3-(40-Hydroxyphenyl)propanol Using Liver Cell Microsomal Fractions (Olha Khymenets, Pere Clapés, Teodor Parella, María-Isabel Covas, Rafael de la Torre, and Jesu´s Joglar).

7.6 Synthesis of the Acyl Glucuronide of Mycophenolic Acid (Matthias Kittelmann, Lukas Oberer, Reiner Aichholz and Oreste Ghisalba).

8 Synthesis of Cyanohydrins Using Hydroxynitrile Lyases.

8.1 Synthesis of (S)-2-Hydroxy-2-methylbutyric Acid by a Chemoenzymatic Methodology (Manuela Avi and Herfried Griengl).

8.2 (S)-Selective Cyanohydrin Formation from Aromatic Ketones Using Hydroxynitrile Lyases (Chris Roberge, Fred Fleitz and Paul Devine).

8.3 Hydroxynitrile-lyase-catalysed Synthesis of Enantiopure (S)-Acetophenone Cyanohydrins (Jan von Langermann, Annett Mell, Eckhard Paetzold and Udo Kragl).

8.4 (R)- and (S)-Cyanohydrin Formation from Pyridine-3-carboxaldehydeUsingCLEATM-immobilizedHydroxynitrile Lyases (Chris Roberge, Fred Fleitz and Paul Devine).

8.5 A New (R)-Hydroxynitrile Lyase from Prunus mume for Asymmetric Synthesis of Cyanohydrins (Yasuhisa Asano).

9 Synthesis of Chiral sec-Alcohols by Ketone Reduction.

9.1 Asymmetric Synthesis of (S)-Bis(trifluoromethyl)phenylethanol by Biocatalytic Reduction of Bis(trifluoromethyl)acetophenone (David Pollard, Matthew Truppo and Jeffrey Moore).

9.2 Enantioselective and Diastereoselective Enzyme-catalyzed Dynamic Kinetic Resolution of an Unsaturated Ketone (Birgit Kosjek, David Tellers and Jeffrey Moore).

9.3 Enzyme-catalysed Synthesis of -Alkyl--hydroxy Ketones and Esters by Isolated Ketoreductases (Ioulia Smonou and Dimitris Kalaitzakis).

9.4 Asymmetric Reduction of Phenyl Ring-containing Ketones Using Xerogel-encapsulated W110A Secondary Alcohol Dehydrogenase from Thermoanaerobacter ethanolicus (Musa M. Musa, Karla I. Ziegelmann-Fjeld, Claire Vieille, J. Gregory Zeikus and Robert S. Phillips).

9.5 (R)- and (S)-Enantioselective Diaryl Methanol Synthesis Using Enzymatic Reduction of Diaryl Ketones (Matthew Truppo, Krista Morley, David Pollard and Paul Devine).

9.6 Highly Enantioselective and Efficient Synthesis of Methyl (R)-o-Chloromandelate, Key Intermediate for Clopidogrel Synthesis, with Recombinant Escherichia coli (Tadashi Ema, Nobuyasu Okita, Sayaka Ide and Takashi Sakai).

10 Reduction of Functional Groups.

10.1 Reduction of Carboxylic Acids by Carboxylic Acid Reductase Heterologously Expressed in Escherichia coli (Andrew S. Lamm, Arshdeep Khare and John P.N. Rosazza).

10.2 Light-driven Stereoselective Biocatalytic Oxidations and Reductions (Andreas Taglieber, Frank Schulz, Frank Hollmann, Monika Rusek and Manfred T. Reetz).

10.3 Unnatural Amino Acids by Enzymatic Transamination: Synthesis of Glutamic Acid Analogues with Aspartate Aminotransferase (Thierry Gefflaut, Emmanuelle Sagot and Jean Bolte).

10.4 Synthesis of L-Pipecolic Acid with 1-Piperidine-2-carboxylate Reductase from Pseudomonas putida (Hisaaki Mihara and Nobuyoshi Esaki).

10.5 Synthesis of Substituted Derivatives of L-Phenylalanine and of other Non-natural L-Amino Acids Using Engineered Mutants of Phenylalanine Dehydrogenase (Philip Conway, Francesca Paradisi and Paul Engel).

11 Enzymatic Oxidation Chemistry.

11.1 Monoamine Oxidase-catalysed Reactions: Application Towards the Chemo-enzymatic Deracemization of the Alkaloid (–)-Crispine A (Andrew J. Ellis, Renate Reiss, Timothy J. Snape and Nicholas J. Turner

11.2 Glucose Oxidase-catalysed Synthesis of). Aldonic Acids (Fabio Pezzotti, Helene Therisod and Michel Therisod).

11.3 Oxidation and Halo-hydroxylation of Monoterpenes with Chloroperoxidase from Leptoxyphium fumago (Bjoern-Arne Kaup, Umberto Piantini, Matthias Wüst and Jens

Schrader).

11.4 Chloroperoxidase-catalyzed Oxidation of Phenyl Methylsulfide in Ionic Liquids (Cinzia Chiappe).

11.5 Stereoselective Synthesis of -Hydroxy Sulfoxides Catalyzed by Cyclohexanone Monooxygenase (Stefano Colonna, Nicoletta Gaggero, Sara Pellegrino and Francesca

Zambianchi).

11.6 Enantioselective Kinetic Resolution of Racemic 3-Phenylbutan-2-one Using a Baeyer–Villiger Monooxygenase (Anett Kirschner and Uwe T. Bornscheuer).

11.7 Desymmetrization of 1-Methylbicyclo[3.3.0]octane-2,8-dione by the Retro-claisenase 6-Oxo Camphor Hydrolase (Gideon Grogan and Cheryl Hill).

11.8 Synthesis of Optically Pure Chiral Lactones by Cyclopentadecanone Monooxygenase-catalyzed Baeyer–Villiger Oxidations (Shaozhao Wang, Jianzhong Yang and Peter C.K. Lau).

12 Whole-cell Oxidations and Dehalogenations.

12.1 Biotransformations of Naphthalene to 4-Hydroxy-1-tetralone by Streptomyces griseus NRRL 8090 (Arshdeep Khare, Andrew S. Lamm and John P.N. Rosazza).

12.2 Hydroxylation of Imidacloprid for the Synthesis of Olefin Imidacloprid by Stenotrophomonas maltophilia CGMCC 1.1788 (Sheng Yuan and Yi-jun Dai).

12.3 Biocatalytic Synthesis of 6-Hydroxy Fluvastatin using Motierella rammaniana DSM 62752 in Shake Flask Culture and on Multi-gram Scale using a Wave Bioreactor (Matthias Kittelmann, Maria Serrano Correia, Anton Kuhn, Serge Parel, Jürgen Ku¨hno¨l, Reiner Aichholz, Monique Ponelle and Oreste Ghisalba).

12.4 Synthesis of 1-Adamantanol from Adamantane through Regioselective Hydroxylation by Streptomyces griseoplanus Cells (Koichi Mitsukura, Yoshinori Kondo, Toyokazu Yoshida and Toru Nagasawa).

12.5 Enantioselective Benzylic Microbial Hydroxylation of Indan and Tetralin (Renata P. Limberger, Cleber V. Ursini, Paulo J.S. Moran and J. Augusto R. Rodrigues).

12.6 Stereospecific Biotransformation of (R,S)-Linalool by Corynespora cassiicola DSM 62475 into Linalool Oxides (Marco-Antonio Mirata and Jens Schrader).

12.7 The Biocatalytic Synthesis of 4-Fluorocatechol from Fluorobenzene (Louise C. Nolan and Kevin E. O’Connor).

12.8 Synthesis of Enantiopure (S)-Styrene Oxide by Selective Oxidation of Styrene by Recombinant Escherichia coli JM101 (pSPZ10) (Katja Buehler and Andreas Schmid).

12.9 Biotransformation of -Bromo and ,0-Dibromo Alkanone into -Hydroxyketone and -Diketone by Spirulina platensis (Takamitsu Utsukihara and C. Akira Horiuchi).

Index.

Product Details

ISBN:
9780470519271
Author:
Whittall, John
Publisher:
Wiley
Editor:
Sutton, Peter
Author:
All
Author:
Dr John Whittall
Author:
Sutton, Peter
Author:
Dr Peter Sutton
Author:
John Whitt
Subject:
Material Science
Subject:
Enzymes
Subject:
Organic compounds -- Synthesis.
Subject:
Biotechnology
Subject:
biocatalysis, biotransformations, biocatalysis and biotransformations, biocatalysts, enzymes, natural catalysts, organic compounds
Subject:
Catalysis
Subject:
Materials Science-General
Subject:
biocatalysis
Copyright:
Edition Description:
WOL online Book (not BRO)
Publication Date:
20091209
Binding:
Electronic book text in proprietary or open standard format
Language:
English
Illustrations:
Y
Pages:
432
Dimensions:
244 x 168 x 15 mm 31 oz

Other books you might like

  1. Practical Methods for Biocatalysis... New Hardcover $107.20
  2. Computational Modeling of Gene... New Trade Paper $45.75

Related Subjects

Engineering » Construction » General
Humanities » Philosophy » General
Science and Mathematics » Biology » General
Science and Mathematics » Chemistry » Chemical Engineering
Science and Mathematics » Materials Science » General

Practical Methods for Biocatalysis and Biotransformations New Hardcover
0 stars - 0 reviews
$196.95 Backorder
Product details 432 pages John Wiley & Sons - English 9780470519271 Reviews:
"Synopsis" by , Practical Methods for Biocatalysis and Biotransformations is a “how-to” guide focusing on commercially available enzymes and strains of microorganisms that are readily obtained from culture collections. The source of starting materials and reagents, hints, tips, and safety advice (where appropriate) are given to ensure, as far as possible, that the procedures are reproducible. Comparisons to alternative methodology are given, and relevant references to the primary literature are cited. Practical Methods for Biocatalysis and Biotransformations is an essential text offering validated biocatalyst methods for researchers and postgraduate students in industry and academia.
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.