Murakami Sale
 
 

Recently Viewed clear list


Original Essays | August 21, 2014

Richard Bausch: IMG Why Literature Can Save Us



Our title is, of course, a problem. "Why Literature Can Save Us." And of course the problem is one of definition: what those words mean. What is... Continue »
  1. $18.87 Sale Hardcover add to wish list

    Before, During, After

    Richard Bausch 9780307266262

spacer
Qualifying orders ship free.
$167.50
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
1 Remote Warehouse Software Engineering- Systems Analysis and Design

High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices

by

High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices Cover

 

Synopses & Reviews

Publisher Comments:

A cutting-edge guide to the theory and practice of high-speed digital system design

An understanding of high-speed interconnect phenomena is essential for digital designers who must deal with the challenges posed by the ever-increasing operating speeds of today's microprocessors. This book provides a much-needed, practical guide to the state of the art of modern digital system design, combining easily accessible explanations with immensely useful problem-solving strategies. Written by three leading Intel engineers, High-Speed Digital System Design clarifies difficult and often neglected topics involving the effects of high frequencies on digital buses and presents a variety of proven techniques and application examples. Extensive appendices, formulas, modeling techniques as well as hundreds of figures are also provided.

Coverage includes:

* A thorough introduction to the digital aspects of basic transmission line theory

* Crosstalk and nonideal transmission line effects on signal quality and timings

* The impact of packages, vias, and connectors on signal integrity

* The effects of nonideal return current paths, high frequency power delivery, and simultaneous switching noise

* Explanations of how driving circuit characteristics affect the quality of the digital signal

* Digital timing analysis at the system level that incorporates high-speed signaling effects into timing budgets

* Methodologies for designing high-speed buses and handling the very large number of variables that affect interconnect performance

* Radiated emission problems and how to minimize system noise

* The practical aspects of making measurements in high-speed digital systems

Book News Annotation:

Covers the practical and theoretical aspects necessary to design modern high-speed digital systems at the platform level, with particular attention paid to computer buses. The authors, three Intel engineers, begin with basic transmission line theory, crosstalk and non-ideal transmission line effect on signal quality and timings, and the impacts of packages, vias and connectors on signal integrity. Non-ideal return paths, simultaneous switching noise, power delivery, buffer modeling, and digital timing analysis are then explained. The final chapters discuss methods for designing high-speed buses that handle the large number of variables that affect interconnect performance, radiated emissions problems and system noise minimization, and high-speed measurement techniques.
Annotation c. Book News, Inc., Portland, OR (booknews.com)

Synopsis:

This book focuses on the design of interconnections between the integral parts of a computer, an area responsible for increasing processing speeds. It presents theory in the context of relevant real-life design examples. The authors, researchers in Intel's Digital System Design section, also lead readers through exercises that will help them create a real-life design of a high-speed computer bus.

Synopsis:

* The practical aspects of making measurements in high-speed digital systems

Synopsis:

Mikroprozessoren werden immer schneller - generell eine erfreuliche Entwicklung. Eine Folge davon ist aber auch, daß sich Schaltkreise in Computern ungewöhnlich und in unerwarteter Weise verhalten. Die Autoren dieses Bandes versuchen, solche Effekte theoretisch zu unterlegen. Am Beispiel von Situationen aus dem Alltag werden sehr verschiedene interessante Phänomene erklärt. (11/00)

Description:

Includes bibliographical references (p. 342-343) and index.

About the Author

STEPHEN H. HALL is a Senior Design Engineer at Intel Corporation, Portland, Oregon.

GARRETT W. HALL is a Silicon Systems Engineer at Intel Corporation.

JAMES A. McCALL is a Senior Design Engineer at Intel Corporation.

Table of Contents

Preface.

1. The Importance of Interconnect Design.

1.1 The Basics.

1.2 The Past and the Future.

2. Ideal Transmission Line Fundamentals.

2.1 Transmission Line Structures on a PCB or MCM.

2.2 Wave Propagation.

2.3 Transmission Line Parameters.

2.3.1 Characteristic Impedance.

2.3.2 Propagation Velocity, Time, and Distance.

2.3.3 Equivalent Circuit Models for SPICE Simulation.

2.4 Launching Initial Wave and Transmission Line Reflections.

2.4.1 Initial Wave.

2.4.2 Multiple Reflections.

2.4.3 Effect of Rise Time on Reflections.

2.4.4 Reflections From Reactive Loads.

2.4.5 Termination Schemes to Eliminate Reflections.

2.5 Additional Examples.

2.5.1 Problem.

2.5.2 Goals.

2.5.3 Calculating the Cross-Sectional Geometry of the PCB.

2.5.4 Calculating the Propagation Delay.

2.5.5 Determining the Wave Shape Seen at the Receiver.

2.5.6 Creating an Equivalent Circuit.

3. Crosstalk.

3.1 Mutual Inductance and Mutual Capacitance.

3.2 Inductance and Capacitance Matrix.

3.3 Field Simulators.

3.4 Crosstalk-Induced Noise.

3.5 Simulating Crosstalk Using Equivalent Circuit Models.

3.6 Crosstalk-Induced Flight Time and Signal Integrity Variations.

3.6.1 Effect of Switching Patterns on Transmission Line Performance.

3.6.2 Simulating Traces in a Multiconductor System Using a Single-Line Equivalent Model.

3.7 Crosstalk Trends.

3.8 Termination of Odd- and Even-Mode Transmission Line Pairs.

3.8.1 Pi Termination Network.

3.8.2 T Termination Network.

3.9 Minimization of Crosstalk.

3.10 Additional Examples.

3.10.1 Problem.

3.10.2 Goals.

3.10.3 Determining the Maximum Crosstalk-Induced Impedance and Velocity Swing.

3.10.4 Determining if Crosstalk Will Induce False Triggers.

4. Nonideal Interconnect Issues.

4.1 Transmission Line Losses.

4.1.1 Conductor DC Losses.

4.1.2 Dielectric DC Losses.

4.1.3 Skin Effect.

4.1.4 Frequency-Dependent Dielectric Losses.

4.2 Variations in the Dielectric Constant.

4.3 Serpentine Traces.

4.4 Intersymbol Interference.

4.5 Effects of 90�� Bends.

4.6 Effect of Topology.

5. Connectors, Packages, and Vias.

5.1 Vias.

5.2 Connectors.

5.2.1 Series Inductance.

5.2.2 Shunt Capacitance.

5.2.3 Connector Crosstalk.

5.2.4 Effects of Inductively Coupled Connector Pin Fields.

5.2.5 EMI.

5.2.6 Connector Design Guidelines.

5.3 Chip Packages.

5.3.1 Common Types of Packages.

5.3.2 Creating a Package Model.

5.3.3 Effects of a Package.

5.3.4 Optimal Pin-Outs.

6. Nonideal Return Paths, Simultaneous Switching Noise, and Power Delivery.

6.1 Nonideal Current Return Paths.

6.1.1 Path of Least Inductance.

6.1.2 Signals Traversing a Ground Gap.

6.1.3 Signals That Change Reference Planes.

6.1.4 Signals Referenced to a Power or a Ground Plane.

6.1.5 Other Nonideal Return Path Scenarios.

6.1.6 Differential Signals.

6.2 Local Power Delivery Networks.

6.2.1 Determining the Local Decoupling Requirements for High-Speed I/O.

6.2.2 System-Level Power Delivery.

6.2.3 Choosing a Decoupling Capacitor.

6.2.4 Frequency Response of a Power Delivery System.

6.3 SSO/SSN.

6.3.1 Minimizing SSN.

7. Buffer Modeling.

7.1 Types of Models.

7.2 Basic CMOS Output Buffer.

7.2.1 Basic Operation.

7.2.2 Linear Modeling of the CMOS Buffer.

7.2.3 Behavioral Modeling of the Basic CMOS Buffer.

7.3 Output Buffers That Operate in the Saturation Region.

7.4 Conclusions.

8. Digital Timing Analysis.

8.1 Common-Clock Timing.

8.1.1 Common-Clock Timing Equations.

8.2 Source Synchronous Timing.

8.2.1 Source Synchronous Timing Equations.

8.2.2 Deriving Source Synchronous Timing Equations from an Eye Diagram.

8.2.3 Alternative Source Synchronous Schemes.

8.3 Alternative Bus Signaling Techniques.

8.3.1 Incident Clocking.

8.3.2 Embedded Clock.

9. Design Methodologies.

9.1 Timings.

9.1.1 Worst-Case Timing Spreadsheet.

9.1.2 Statistical Spreadsheets.

9.2 Timing Metrics, Signal Quality Metrics, and Test Loads.

9.2.1 Voltage Reference Uncertainty.

9.2.2 Simulation Reference Loads.

9.2.3 Flight Time.

9.2.4 Flight-Time Skew.

9.2.5 Signal Integrity.

9.3 Design Optimization.

9.3.1 Paper Analysis.

9.3.2 Routing Study.

9.4 Sensitivity Analysis.

9.4.1 Initial Trend and Significance Analysis.

9.4.2 Ordered Parameter Sweeps.

9.4.3 Phase 1 Solution Space.

9.4.4 Phase 2 Solution Space.

9.4.5 Phase 3 Solution Space.

9.5 Design Guidelines.

9.6 Extraction.

9.7 General Rules of Thumb to Follow When Designing a System.

10. Radiated Emissions Compliance and System Noise Minimization.

10.1 FCC Radiated Emission Specifications.

10.2 Physical Mechanisms of Radiation.

10.2.1 Differential-Mode Radiation.

10.2.2 Common-Mode Radiation.

10.2.3 Wave Impedance.

10.3 Decoupling and Choking.

10.3.1 High-Frequency Decoupling at the System Level.

10.3.2 Choking Cables and Localized Power and Ground Planes.

10.3.3 Low-Frequency Decoupling and Ground Isolation.

10.4 Additional PCB Design Criteria, Package Considerations, and Pin-Outs.

10.4.1 Placement of High-Speed Components and Traces.

10.4.2 Crosstalk.

10.4.3 Pin Assignments and Package Choice.

10.5 Enclosure (Chassis) Considerations.

10.5.1 Shielding Basics.

10.5.2 Apertures.

10.5.3 Resonances.

10.6 Spread Spectrum Clocking.

11. High-Speed Measurement Techniques.

11.1 Digital Oscilloscopes.

11.1.1 Bandwidth.

11.1.2 Sampling.

11.1.3 Other Effects.

11.1.4 Statistics.

11.2 Time-Domain Reflectometry.

11.2.1 TDR Theory.

11.2.2 Measurement Factors.

11.3 TDR Accuracy.

11.3.1 Launch Parasitics.

11.3.2 Probe Types.

11.3.3 Reflections.

11.3.4 Interface Transmission Loss.

11.3.5 Cable Loss.

11.3.6 Amplitude Offset Error.

11.4 Impedance Measurement.

11.4.1 Accurate Characterization of Impedance.

11.4.2 Measurement Region in TDR Impedance Profile.

11.5 Odd- and Even-Mode Impedance.

11.6 Crosstalk Noise.

11.7 Propagation Velocity.

11.7.1 Length Difference Method.

11.7.2 Y-Intercept Method.

11.7.3 TDT Method.

11.8 Vector Network Analyzer.

11.8.1 Introduction to S Parameters.

11.8.2 Equipment.

11.8.3 One-Port Measurements (ZO,L,C).

11.8.4 Two-Port Measurements (Td, Attenuation, Crosstalk).

11.8.5 Calibration.

11.8.6 Calibration for One-Port Measurements.

11.8.7 Calibration for Two-Port Measurements.

11.8.8 Calibration Verification.

Appendix A: Alternative Characteristic Impedance Formulas.

A.1 Microstrip.

A.2 Symmetric Stripline.

A.3 Offset Stripline.

Appendix B: GTL Current-Mode Analysis.

B.1 Basic GTL Operation.

B.2 GTL Transitions When a Middle Agent Is Driving.

B.3 GTL Transitions When an End Agent With a Termination Is Driving.

B.4 Transitions When There is a Pull-Up at the Middle Agent.

Appendix C: Frequency-Domain Components in a Digital Signal.

Appendix D: Useful S-Parameter Conversions.

D.1 ABCD, Z, and Y Parameters.

D.2 Normalizing the S Matrix to a Different Characteristic Impedance.

D.3 Derivation of the Formulas Used to Extract the Mutual Inductance and Capacitance from a Short Structure Using S21 Measurements.

D.4 Derivation of the Formula to Extract Skin Effect Resistance from a Transmission Line.

Appendix E: Definition of the Decibel.

Appendix F: FCC Emission Limits.

Bibliography.

Index.

Product Details

ISBN:
9780471360902
Author:
Hall, Stephan H.
Author:
Hall, Garrett W.
Author:
Hall, Stephen H.
Author:
McCall, James A.
Publisher:
John Wiley & Sons
Location:
New York
Subject:
Engineering - Electrical & Electronic
Subject:
Computer Engineering
Subject:
Electronic digital computers
Subject:
Microcomputers
Subject:
Programming - Systems Analysis & Design
Subject:
Computer interfaces
Subject:
Very high speed integrated circuits
Subject:
Electricity
Subject:
Software Development & Engineering - Systems
Subject:
Engineering / Electrical
Subject:
Software Engineering-Systems Analysis and Design
Subject:
Circuit Theory & Design
Copyright:
Series Volume:
152-99
Publication Date:
20000908
Binding:
HARDCOVER
Grade Level:
General/trade
Language:
English
Illustrations:
Yes
Pages:
362
Dimensions:
9.49x6.35x.87 in. 1.42 lbs.

Other books you might like

  1. Because of Winn-Dixie
    Used Book Club Paperback $2.50
  2. Tintin Destination Moon Used Trade Paper $6.95
  3. Tintin & the Picaros Used Trade Paper $6.95
  4. The Monk and the Riddle: The... Used Hardcover $7.95
  5. Atomic Spectroscopy, Second Edition, New Hardcover $278.25
  6. Electronic Circuit Design: Art and... New Trade Paper $81.75

Related Subjects

Computers and Internet » Software Engineering » Systems Analysis and Design
Engineering » Engineering » General Engineering
Health and Self-Help » Health and Medicine » General
Health and Self-Help » Health and Medicine » General Medicine
Science and Mathematics » Electricity » Applied Electronics
Science and Mathematics » Electricity » General Electricity
Science and Mathematics » Electricity » General Electronics
Science and Mathematics » Geology » Earth Sciences
Science and Mathematics » Physics
Science and Mathematics » Physics » Optics

High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices New Hardcover
0 stars - 0 reviews
$167.50 In Stock
Product details 362 pages John Wiley & Sons - English 9780471360902 Reviews:
"Synopsis" by , This book focuses on the design of interconnections between the integral parts of a computer, an area responsible for increasing processing speeds. It presents theory in the context of relevant real-life design examples. The authors, researchers in Intel's Digital System Design section, also lead readers through exercises that will help them create a real-life design of a high-speed computer bus.
"Synopsis" by , * The practical aspects of making measurements in high-speed digital systems
"Synopsis" by , Mikroprozessoren werden immer schneller - generell eine erfreuliche Entwicklung. Eine Folge davon ist aber auch, daß sich Schaltkreise in Computern ungewöhnlich und in unerwarteter Weise verhalten. Die Autoren dieses Bandes versuchen, solche Effekte theoretisch zu unterlegen. Am Beispiel von Situationen aus dem Alltag werden sehr verschiedene interessante Phänomene erklärt. (11/00)
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.