 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$65.50
New Trade Paper
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
This title in other editionsOther titles in the Princeton Science Library series:
The Enjoyment of Mathematics (Princeton Science Library)by Hans Rademacher
Synopses & ReviewsPublisher Comments:What is so special about the number 30? How many colors are needed to color a map? Do the prime numbers go on forever? Are there more whole numbers than even numbers? These and other mathematical puzzles are explored in this delightful book by two eminent mathematicians. Requiring no more background than plane geometry and elementary algebra, this book leads the reader into some of the most fundamental ideas of mathematics, the ideas that make the subject exciting and interesting. Explaining clearly how each problem has arisen and, in some cases, resolved, Hans Rademacher and Otto Toeplitz's deep curiosity for the subject and their outstanding pedagogical talents shine through.
Synopsis:What is so special about the number 30? How many colors are needed to color a map? Do the prime numbers go on forever? Are there more whole numbers than even numbers? These and other mathematical puzzles are explored in this delightful book by two eminent mathematicians. Requiring no more background than plane geometry and elementary algebra, this book leads the reader into some of the most fundamental ideas of mathematics, the ideas that make the subject exciting and interesting. Explaining clearly how each problem has arisen and, in some cases, resolved, Hans Rademacher and Otto Toeplitz's deep curiosity for the subject and their outstanding pedagogical talents shine through.
Synopsis:Requiring no more background than plane geometry and elementary algebra, this book leads the reader into some of the most fundamental ideas of mathematics, the ideas that make the subject exciting and interesting.
Table of ContentsPreface v
Introduction 5 1. The Sequence of Prime Numbers 9 2. Traversing Nets of Curves 13 3. Some Maximum Problems 17 4. Incommensurable Segments and Irrational Numbers 22 5. A Minimum Property of the Pedal Triangle 27 6. A Second Proof of the Same Minimum Property 30 7. The Theory of Sets 34 8. Some Combinatorial Problems 43 9. On Waring's Problem 52 10. On Closed SelfIntersecting Curves 61 11. Is the Factorization of a Number into Prime Factors Unique?66 12. The FourColor Problem 73 13. The Regular Polyhedrons 82 14. Pythagorean Numbers and Fermat's Theorem 88 15. The Theorem of the Arithmetic and Geometric Means 95 16. The Spanning Circle of a Finite Set of Points 103 17. Approximating Irrational Numbers by Means of Rational Numbers ill 18. Producing Rectilinear Motion by Means of Linkages 119 19. Perfect Numbers 129 20. Euler's Proof of the Infinitude of the Prime Numbers 135 21. Fundamental Principles of Maximum Problems 139 22. The Figure of Greatest Area with a Given Perimeter 142 23. Periodic Decimal Fractions 147 24. A Characteristic Property of the Circle 160 25. Curves of Constant Breadth 163 26. The Indispensability of the Compass for the Constructions of Elementary Geometry 177 27. A Property of the Number 30 187 28. An Improved Inequality 192 Notes and Remarks 197 What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated SubjectsReference » Science Reference » General Science and Mathematics » History of Science » General Science and Mathematics » Mathematics » Games and Puzzles Science and Mathematics » Mathematics » History Science and Mathematics » Mathematics » Popular Surveys and Recreational 

