Murakami Sale
 
 

Recently Viewed clear list


Original Essays | August 20, 2014

Julie Schumacher: IMG Dear Professor Fitger



Saint Paul, August 2014 Dear Professor Fitger, I've been asked to say a few words about you for Powells.com. Having dreamed you up with a ball-point... Continue »
  1. $16.07 Sale Hardcover add to wish list

    Dear Committee Members

    Julie Schumacher 9780385538138

spacer
Qualifying orders ship free.
$229.50
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
25 Remote Warehouse Mathematics- Geometry and Trigonometry

The Orbit Method in Geometry and Physics: In Honor of A.A. Kirillov

by

The Orbit Method in Geometry and Physics: In Honor of A.A. Kirillov Cover

 

Synopses & Reviews

Publisher Comments:

The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and continues to be an important tool today. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits in 1962, places him as the founder of orbit theory. The origins of the orbit method lie in the search for a relationship between classical and quantum mechanics. Over the years, the orbit method has been used to link harmonic analysis (theory of unitary representations of Lie groups) with differential geometry (symplectic geometry of homogeneous spaces), and it has stimulated and invigorated many classical domains of mathematics, i.e., representation theory, integrable systems, complex algebraic geometry, to name several. It continues to be a useful and powerful tool in all of these areas of mathematics and mathematical physics. This volume, dedicated to A. A. Kirillov, covers a very broad range of key topics such as: * The orbit method in the theory of unitary representations of Lie groups * Infinite-dimensional Lie groups: their orbits and representations * Quantization and the orbit method; geometric quantization (old and new) * The Virasoro algebra; string and conformal field theories * Lie superalgebras and their representations * Combinatorial aspects of representation theory. The prominent contributors to this volume present original and expository invited papers in the areas of Lie theory, geometry, algebra, and mathematical physics. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses. Contributors include: A. Alekseev, J. Alev, R. Brylinski, J. Dixmier, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina.

Synopsis:

The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and continues to be an important tool today. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits in 1962, places him as the founder of orbit theory. The origins of the orbit method lie in the search for a relationship between classical and quantum mechanics. Over the years, the orbit method has been used to link harmonic analysis (theory of unitary representations of Lie groups) with differential geometry (symplectic geometry of homogeneous spaces), and it has stimulated and invigorated many classical domains of mathematics, i.e., representation theory, integrable systems, complex algebraic geometry, to name several. It continues to be a useful and powerful tool in all of these areas of mathematics and mathematical physics. This volume, dedicated to A. A. Kirillov, covers a very broad range of key topics such as: * The orbit method in the theory of unitary representations of Lie groups * Infinite-dimensional Lie groups: their orbits and representations * Quantization and the orbit method; geometric quantization (old and new) * The Virasoro algebra; string and conformal field theories * Lie superalgebras and their representations * Combinatorial aspects of representation theory. The prominent contributors to this volume present original and expository invited papers in the areas of Lie theory, geometry, algebra, and mathematical physics. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses. Contributors include: A. Alekseev, J. Alev, R. Brylinski, J. Dixmier, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina.

Table of Contents

A Principle of Variations in Representation Theory * Finite Group Actions on Poisson Algebras * Representations of Quantum Tori and G-bundles on Elliptic Curves * Dixmier Algebras for Classical Complex Nilpotent Orbits via Kraft-Procesi Models I * Gerbes of Chiral Differential Operators. III * Defining Relations for the Exceptional Superalgebras of Vector Fields * Schur-Weyl Duality and Representations of Permutation Groups * Quantiziation of Hypersurface Orbitla Varieties in sln * Generalization of a Theorem of Waldspurger to Nice Representations * Two More Variations on the Triangular Theme * The Generalized Cayley Map from an Algebraic Group to its Lie Algebra * Geometry of GLn(C) at Infinity: Hinges, Complete Collineations, Projective Compactifications, and Universal Boundary * Point Processes Related to the Infinite Symmetric Group * Some Toric Manifolds and a Path Integral * Projective Schur Functions as Bispherical Functions on Certain Homogeneous Superspaces * Maximal Subalgebras of the Classical Linear Lie Superalgebras

Product Details

ISBN:
9780817642327
Author:
Festschrift, A. A., Kirillo
Publisher:
Birkhauser
Author:
Duval, Christian
Author:
Ovsienko, Valentin
Author:
Guieu, Laurent
Author:
Guieu, L.
Subject:
General
Subject:
Geometry - General
Subject:
Algebra - Linear
Subject:
Orbit method.
Subject:
Group Theory and Generalizations
Subject:
Group Theory
Subject:
Lie groups
Subject:
geometrical quantization
Subject:
Mathematical Physics
Subject:
Representation Theory
Subject:
Symplectic geometry
Subject:
Differential geometry
Subject:
Manifolds and Cell Complexes (incl. Diff.Topology)
Subject:
Theoretical, Mathematical and Computational Physics
Subject:
Mathematics-Geometry and Trigonometry
Subject:
Algebra - Abstract
Copyright:
Edition Description:
Book
Series:
Progress in Mathematics
Series Volume:
213
Publication Date:
20030515
Binding:
HARDCOVER
Language:
English
Illustrations:
Y
Pages:
487
Dimensions:
235 x 155 mm 1900 gr

Related Subjects

Engineering » Mechanical Engineering » General
Health and Self-Help » Health and Medicine » General
Health and Self-Help » Health and Medicine » General Medicine
Science and Mathematics » Mathematics » Algebra » Lie Groups and Algebra
Science and Mathematics » Mathematics » Algebra » Linear Algebra
Science and Mathematics » Mathematics » Differential Geometry
Science and Mathematics » Mathematics » Functional Analysis
Science and Mathematics » Mathematics » General
Science and Mathematics » Mathematics » Geometry » Geometry and Trigonometry
Science and Mathematics » Mathematics » Group Theory
Science and Mathematics » Physics » Math

The Orbit Method in Geometry and Physics: In Honor of A.A. Kirillov New Hardcover
0 stars - 0 reviews
$229.50 In Stock
Product details 487 pages Birkhauser Boston - English 9780817642327 Reviews:
"Synopsis" by , The orbit method influenced the development of several areas of mathematics in the second half of the 20th century and continues to be an important tool today. Among the distinguished names associated with the orbit method is that of A.A. Kirillov, whose pioneering paper on nilpotent orbits in 1962, places him as the founder of orbit theory. The origins of the orbit method lie in the search for a relationship between classical and quantum mechanics. Over the years, the orbit method has been used to link harmonic analysis (theory of unitary representations of Lie groups) with differential geometry (symplectic geometry of homogeneous spaces), and it has stimulated and invigorated many classical domains of mathematics, i.e., representation theory, integrable systems, complex algebraic geometry, to name several. It continues to be a useful and powerful tool in all of these areas of mathematics and mathematical physics. This volume, dedicated to A. A. Kirillov, covers a very broad range of key topics such as: * The orbit method in the theory of unitary representations of Lie groups * Infinite-dimensional Lie groups: their orbits and representations * Quantization and the orbit method; geometric quantization (old and new) * The Virasoro algebra; string and conformal field theories * Lie superalgebras and their representations * Combinatorial aspects of representation theory. The prominent contributors to this volume present original and expository invited papers in the areas of Lie theory, geometry, algebra, and mathematical physics. The work will be an invaluable reference for researchers in the above mentioned fields, as well as a useful text for graduate seminars and courses. Contributors include: A. Alekseev, J. Alev, R. Brylinski, J. Dixmier, D.R. Farkas, V. Ginzburg, V. Gorbounov, P. Grozman, E. Gutkin, A. Joseph, D. Kazhdan, A.A. Kirillov, B. Kostant, D. Leites, F. Malikov, A. Melnikov, Y.A. Neretin, A. Okounkov, G. Olshanski, F. Petrov, A. Polishchuk, W. Rossmann, A. Sergeev, V. Schechtman, I. Shchepochkina.
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.