 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$77.50
New Trade Paper
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
Statistical Physicsby Tony Guenault
Synopses & ReviewsPublisher Comments:In this revised and enlarged second edition of an established text Tony Guenault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is selfcontained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication.
A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin1/2 solid, can be discussed at an early stage. The treatment of gases gives full coverage to MaxwellBoltzmann, FermiDirac and BoseEinstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for example, liquid helium3 and helium4, and statistics under extreme conditions (superconductivity and astrophysical systems). Synopsis:This revised and enlarged second edition provides a clear and refreshingly readable introduction to statistical physics. It concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication.
Synopsis:In this revised and enlarged second edition, Tony Guénault provides a clear and refreshingly readable introduction to statistical physics. The treatment itself is selfcontained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. The book adopts a straightforward quantum approach to statistical averaging from the outset. The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. The treatment of gases gives full coverage to MaxwellBoltzmann, FermiDirac and BoseEinstein statistics.
About the AuthorTony Guénault is Emeritus Professor of Low Temperature Physics and a former Head of the School of Physics and Materials at Lancaster University, UK
Table of ContentsPreface 1: Basic Ideas. 1.1. The Macrostate. 1.2. Microstates. 1.3. The Average Postulate. 1.4. Distributions. 1.5. The Statistical method in Outline. 1.6. A Model Example. 1.7. Statistical Entropy and Microstates. 1.8 Summary. 2: Distinguishable Particles. 2.1. The Thermal Equilibrium Distribution. 2.2. What are a and ß? 2.3. A Statistical Definition of Temperature. 2.4. The Boltzman Distribution and the Partition Function. 2.5. Calculation of Thermodynamic Functions. 2.6. Summary. 3: Two Examples. 3.1. A spin½ Solid. 3.2. Localized harmonic Oscillators. 3.3. Summary. 4: Gases: The Density of States. 4.1. Fitting waves into boxes. 4.2. Other Information for Statistical Physics. 4.3. An Example  Helium Gas. 4.4. Summary 5: Gases: The Distributions. 5.1. Distribution in groups. 5.2. Identical Particles  Fermions and Bosons. 5.3. Counting Microstates for Gases. 5.4. The Three Distributions. 5.5. Summary. 6: MaxwellBoltzmann Gases. 6.1. The validity of the MaxwellBoltzmann Limit. 6.2. The MaxwellBoltzmann Distribution of Speeds. 6.3. The Connection to Thermodynamics. 6.4. Summary. 7: Diatomic Gases. 7.1. Energy Contributions in Diatomic Gases. 7.2. Heat Capacity of a Diatomic Gas. 7.3. The Heat Capacity of Hydrogen. 7.4. Summary. 8: FermiDirac Gases. 8.1. Properties of an Ideal FermiDirac Gas. 8.2. Application to Metals. 8.3. Application to Helium3. 8.4. Summary. 9: BoseEinstein Gases. 9.1. Properties of an Ideal BoseEinstein Gas. 9.2. Application to Helium4. 9.3. Phoney Bosons. 9.4. A Note about Cold Atoms. 9.5. Summary. 10: Entropy in Other Situations. 10.1. Entropy and Disorder. 10.2. An Assembly at Fixed Temperature. 10.3. Vacancies in Solids. 11: Phase Transitions. 11.1. Types of Phase Transition. 11.2. Ferromagnetism of a spin½ Solid. 11.3. Real Ferromagnetic Materials. 11.4. OrderDisorder Transformations in Alloys. 12: Two New Ideas. 12.1. Statistics or Dynamics. 12.2. Ensembles  a Larger View. 13: Chemical Thermodynamics. 13.1. Chemical Potential Revisited. 13.2. The Grand Canonical Ensemble. 13.3. Ideal Gases in the Grand Ensemble. 13.4. Mixed Systems and Chemical Reactions. 14: Dealing with Interactions. 14.1. Electrons in Metals. 14.2. Liquid Helium3: a Fermi Liquid. 14.3. Liquid Helium4: a Bose Liquid? 14.4. Real Imperfect Gases. 15: Statistics under Extreme Conditions. 15.1. Superfluid States in FermiDirac Systems. 15.2. Statistics in Astrophysical Systems. Appendix A  Some Elementary Counting Problems Appendix B  Some Problems with Large Numbers Appendix C  Some Useful Integrals Appendix D  Some Useful Constants Appendix E  Exercises Appendix F  Answers to Exercises Index
What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Related SubjectsReference » Science Reference » General Science and Mathematics » Biology » Evolution Science and Mathematics » Mathematics » Probability and Statistics » General Science and Mathematics » Mathematics » Probability and Statistics » Statistics Science and Mathematics » Mathematics » Topology Science and Mathematics » Physics » Fluid Mechanics Science and Mathematics » Physics » General Science and Mathematics » Physics » Thermodynamics 

