 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$7.48
Used Trade Paper
Ships in 1 to 3 days
More copies of this ISBNThis title in other editionsOther titles in the Annals of Mathematics Studies series:
Radon Transforms and the Rigidity of the Grassmannians (Am156) (Annals of Mathematics Studies)by Jacques Gasqui
Synopses & ReviewsPublisher Comments:This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry. Synopsis:This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry. Synopsis:This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric?
The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank >1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces.
A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry. About the AuthorJacques Gasqui is Professor of Mathematics at Institut Fourier, Universite de Grenoble I. Hubert Goldschmidt is Visiting Professor of Mathematics at Columbia University and Professeur des Universites in France.
Table of ContentsIntroduction ix
CHAPTER I. Symmetric spaces and Einstein manifolds 1.Riemannian manifolds 1 2.Einstein manifolds 15 3.Symmetric spaces 19 4.Complex manifolds 27 CHAPTER II. Radon transforms on symmetric spaces CHAPTER III. Symmetric spaces of rank one CHAPTER IV. The real Grassmannians CHAPTER V. The Complex Quadradic CHAPTER VI. The rigidity of the complex quadric CHAPTER VII. The rigidity of the real Grassmannians CHAPTER VIII. The complex Grassmannians CHAPTER IX. The rigidity of the complex Grassmannians CHAPTER X. Products of symmetric spaces References 357 What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated Subjects
History and Social Science » Politics » General


