This is Real Life Sale
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Visit our stores


    Recently Viewed clear list


    Required Reading | January 16, 2015

    Required Reading: Books That Changed Us



    We tend to think of reading as a cerebral endeavor, but every once in a while, it can spur action. The following books — ranging from... Continue »

    spacer
Qualifying orders ship free.
$60.30
List price: $102.25
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
Qty Store Section
1 Local Warehouse Mathematics- General

More copies of this ISBN

Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables

by

Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables Cover

 

Synopses & Reviews

Publisher Comments:

Explores regular structures in graphs and contingency tables by spectral theory and statistical methods

This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs.

This book is suitable for a one-semester course for graduate students in data mining, multivariate statistics, or applied graph theory; but by skipping the proofs, the algorithms can also be used by specialists who just want to retrieve information from their data when analysing communication, social, or biological networks.

Spectral Clustering and Biclustering:

  • Provides a unified treatment for edge-weighted graphs and contingency tables via methods of multivariate statistical analysis (factoring, clustering, and biclustering).
  • Uses spectral embedding and relaxation to estimate multiway cuts of edge-weighted graphs and bicuts of contingency tables.
  • Goes beyond the expanders by describing the structure of dense graphs with a small spectral gap via the structural eigenvalues and eigen-subspaces of the normalized modularity matrix.
  • Treats graphs like statistical data by combining methods of graph theory and statistics.
  • Establishes a common outline structure for the contents of each algorithm, applicable to networks and microarrays, with unified notions and principles.

Synopsis:

Offering a timely and novel treatment of spectral clustering and biclustering of networks, this book bridges the gap between graph theory and statistics by giving answers to the demanding questions that arise when statisticians are confronted with large weighted graphs or rectangular arrays. The author presents a wide range of classical and modern statistical methods adapted to weighted graphs and contingency tables. In addition, practical examples from social and biological networks are included, and a teacher's guide is provided on a supporting website.

About the Author

She is graduated from the Eötvös University of Budapest and holds a PhD (1984); further, a CSc degree (1993) from the Hungarian Academy of Sciences. Currently, she is a professor of the Institute of Mathematics, Budapest University of Technology and Economics and adjoint professor of the Central European University of Budapest. She also leads an undergraduate research course on Spectral Clustering in the Budapest Semester of Mathematics.

Her fields of expertise are multivariate statistics, applied graph theory, and data mining of social, biological, and communication networks. She has been working in various national and European research projects related to networks and data analysis.

She has published research papers in the Journal of Multivariate Analysis, Linear Algebra and  Its Applications, Discrete Mathematics, Discrete Applied Mathematics, European Journal of Combinatorics, and the Physical  Review E, among others.

She is the coauthor of the textbook in Hungarian: Bolla, M., Krámli, A., Theory of statistical inference, Typotex, Budapest (first ed. 2005, second ed. 2012) and another Hungarian book on multivariate statistical analysis. She was the managing editor of the book Contests in Higher Mathematics (ed. G. J. Székely), Springer, 1996.

Table of Contents

Preface xi

Acknowledgements xiii

List of abbreviations xv

Introduction xix

References xxii

1 Multivariate analysis techniques for representing graphs and contingency tables 1

1.1 Quadratic placement problems for weighted graphs and hypergraphs 1

1.1.1 Representation of edge-weighted graphs 2

1.1.2 Representation of hypergraphs 5

1.1.3 Examples for spectra and representation of simple graphs 8

1.2 SVD of contingency tables and correspondence matrices 12

1.3 Normalized Laplacian and modularity spectra 16

1.4 Representation of joint distributions 21

1.4.1 General setup 21

1.4.2 Integral operators between L2 spaces 22

1.4.3 When the kernel is the joint distribution itself 23

1.4.4 Maximal correlation and optimal representations 25

1.5 Treating nonlinearities via reproducing kernel Hilbert spaces 28

1.5.1 Notion of the reproducing kernel 29

1.5.2 RKHS corresponding to a kernel 32

1.5.3 Two examples of an RKHS 33

1.5.4 Kernel – based on a sample – and the empirical feature map 37

References 40

2 Multiway cuts and spectra 44

2.1 Estimating multiway cuts via spectral relaxation 44

2.1.1 Maximum, minimum, and ratio cuts of edge-weighted graphs 45

2.1.2 Multiway cuts of hypergraphs 54

2.2 Normalized cuts 57

2.3 The isoperimetric number and sparse cuts 64

2.4 The Newman–Girvan modularity 76

2.4.1 Maximizing the balanced Newman–Girvan modularity 78

2.4.2 Maximizing the normalized Newman–Girvan modularity 81

2.4.3 Anti-community structure and some examples 84

2.5 Normalized bicuts of contingency tables 88

References 91

3 Large networks, perturbation of block structures 96

3.1 Symmetric block structures burdened with random noise 96

3.1.1 General blown-up structures 99

3.1.2 Blown-up multipartite structures 109

3.1.3 Weak links between disjoint components 112

3.1.4 Recognizing the structure 114

3.1.5 Random power law graphs and the extended planted partition model 121

3.2 Noisy contingency tables 124

3.2.1 Singular values of a noisy contingency table 127

3.2.2 Clustering the rows and columns via singular vector pairs 129

3.2.3 Perturbation results for correspondence matrices 132

3.2.4 Finding the blown-up skeleton 138

3.3 Regular cluster pairs 142

3.3.1 Normalized modularity and volume regularity of edge-weighted graphs 142

3.3.2 Correspondence matrices and volume regularity of contingency tables 150

3.3.3 Directed graphs 156

References 157

4 Testable graph and contingency table parameters 161

4.1 Convergent graph sequences 161

4.2 Testability of weighted graph parameters 164

4.3 Testability of minimum balanced multiway cuts 166

4.4 Balanced cuts and fuzzy clustering 172

4.5 Noisy graph sequences 175

4.6 Convergence of the spectra and spectral subspaces 177

4.7 Convergence of contingency tables 182

References 187

5 Statistical learning of networks 189

5.1 Parameter estimation in random graph models 189

5.1.1 EM algorithm for estimating the parameters of the block-model 189

5.1.2 Parameter estimation in the α and β models 192

5.2 Nonparametric methods for clustering networks 197

5.2.1 Spectral clustering of graphs and biclustering of contingency tables 199

5.2.2 Clustering of hypergraphs 201

5.3 Supervised learning 203

References 205

Appendix A Linear algebra and some functional analysis 207

A.1 Metric, normed vector, and Euclidean spaces 207

A.2 Hilbert spaces 209

A.3 Matrices 217

References 233

Appendix B Random vectors and matrices 235

B.1 Random vectors 235

B.2 Random matrices 239

References 245

Appendix C Multivariate statistical methods 246

C.1 Principal component analysis 246

C.2 Canonical correlation analysis 248

C.3 Correspondence analysis 250

C.4 Multivariate regression and analysis of variance 252

C.5 The k-means clustering 255

C.6 Multidimensional scaling 257

C.7 Discriminant analysis 258

References 261

Index 263

Product Details

ISBN:
9781118344927
Author:
Bolla, Marianna.
Publisher:
Wiley
Author:
Bolla, Marianna
Subject:
Statistics
Subject:
Multivariate analysis
Subject:
Mathematics | Probability and Statistics
Subject:
Graph theory, spectral clustering, biclustering Networks, statistical methods, multivariate statistics, data mining
Copyright:
Edition Description:
WOL online Book (not BRO)
Publication Date:
20130819
Binding:
HARDCOVER
Language:
English
Pages:
292
Dimensions:
229 x 152 mm

Related Subjects

Business » Accounting and Finance
Science and Mathematics » Geology » Petroleum Geology
Science and Mathematics » Mathematics » Differential Equations
Science and Mathematics » Mathematics » General
Science and Mathematics » Mathematics » Probability and Statistics » General
Science and Mathematics » Mathematics » Probability and Statistics » Statistics

Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables New Hardcover
0 stars - 0 reviews
$60.30 In Stock
Product details 292 pages John Wiley & Sons - English 9781118344927 Reviews:
"Synopsis" by , Offering a timely and novel treatment of spectral clustering and biclustering of networks, this book bridges the gap between graph theory and statistics by giving answers to the demanding questions that arise when statisticians are confronted with large weighted graphs or rectangular arrays. The author presents a wide range of classical and modern statistical methods adapted to weighted graphs and contingency tables. In addition, practical examples from social and biological networks are included, and a teacher's guide is provided on a supporting website.
spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.