 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

On Order
$174.95
New Hardcover
Currently out of stock.
available for shipping or prepaid pickup only
Other titles in the Chapman & Hall/CRC Applied Mathematics and Nonlinear Science series:
Chapman & Hall/CRC Applied Mathematics and Nonlinear Science #3: Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applicationsby Victor A. Galaktionov
Synopses & ReviewsPublisher Comments:Unlike the classical Sturm theorems on the zeros of solutions of secondorder ODEs, Sturm's evolution zero set analysis for parabolic PDEs did not attract much attention in the 19th century, and, in fact, it was lost or forgotten for almost a century. Briefly revived by P lya in the 1930's and rediscovered in part several times since, it was not until the 1980's that the Sturmian argument for PDEs began to penetrate into the theory of parabolic equations and was found to have several fundamental applications.
Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications focuses on geometric aspects of the intersection comparison for nonlinear models creating finitetime singularities. After introducing the original Sturm zero set results for linear parabolic equations and the basic concepts of geometric analysis, the author presents the main concepts and regularity results of the geometric intersection theory (Gtheory). Here he considers the general singular equation and presents the geometric notions related to the regularity and interface propagation of solutions. In the general setting, the author describes the main aspects of the ODEPDE duality, proves existence and nonexistence theorems, establishes uniqueness and optimal Bernsteintype estimates, and derives interface equations, including higherorder equations. The final two chapters explore some special aspects of discontinuous and continuous limit semigroups generated by singular parabolic equations. Much of the information presented here has never before been published in book form. Readable and selfcontained, this book forms a unique and outstanding reference on secondorder parabolic PDEs used as models for a wide range of physical problems. Book News Annotation:Galaktionov (mathematics, U. of Bath, UK) places the Sturm theory of zeros of solutions of onedimensional linear parabolic equations as the cornerstone of his exploration of nonlinear secondorder parabolic equations, such as the reactiondiffusionadsorption models from combustion, heat conduction, and nonstationary filtration theories. He considers questions related to existence, nonexistence, uniqueness and regularity properties of solutions to nonlinear equations admitting blowup, extinction, and other types of evolution singularities with finite propagation and free boundaries.
Annotation ©2004 Book News, Inc., Portland, OR (booknews.com) Synopsis:This book is a reference on nonlinear secondorder parabolic partial differential equations that are used as models to help solve a broad class of engineering and physical problems. The analytical ideas used are geometric as opposed to supersub solution methods that have limited application in the physical world. Sturm Theory is the cornerstone of this type of analysis, which was developed almost two hundred years ago, but then lost or forgotten. Recently the theory was revived and used to produce dramatic mathematical results. At present, there are a number of books that promote the Sturm Theory for ordinary differential equations, but none of them are devoted to parabolic partial differential equations.
What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated Subjects
Science and Mathematics » Mathematics » Differential Equations


