Murakami Sale
 
 

Recently Viewed clear list


Original Essays | August 18, 2014

Ian Leslie: IMG Empathic Curiosity



Today, we wonder anxiously if digital media is changing our brains. But if there's any time in history when our mental operations changed... Continue »
  1. $18.89 Sale Hardcover add to wish list

spacer
Qualifying orders ship free.
$111.00
List price: $137.85
Used Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
19 Partner Warehouse Artificial Intelligence- General

More copies of this ISBN

Artificial Intelligence (3RD 92 Edition)

by

Artificial Intelligence (3RD 92 Edition) Cover

 

Synopses & Reviews

Please note that used books may not include additional media (study guides, CDs, DVDs, solutions manuals, etc.) as described in the publisher comments.

Publisher Comments:

This book explains how it is possible for computers to reason and perceive, thus introducing the field called artificial intelligence. From the book, you learn why the field is important, both as a branch of engineering and as a science.

If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need

This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published.

Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth maintenance, planning, and cognitive modeling.

Part II is about learning, the sine qua non of intelligence. Some methods involve much reasoning; others just extract regularity from data. The material covered includes near-miss analysis, explanation-based learning, knowledge repair, case recording, version-space convergence, identification-tree construction, neural-net training, perceptron convergence, approximation-net construction, and simulated evolution.

Part III is about visual perception and language understanding. You learn not only about perception and language, but also about ideas that have been a major source of inspiration for people working in other subfields of artificial intelligence. The material covered includes object identification, stereo vision, shape from shading, a glimpse of modern linguistic theory, and transition-tree methods for building practical natural-language interfaces. Special Features of this Edition

  • Based on extensive teaching experience
  • Semiformal representation and procedure specifications bring the ideas to within a step or two of implementation and highlight unifying themes.
  • Application examples provide a glimpse of the ideas at work in real-world systems.
  • Powerful ideas and principles are identified and emphasized.

0201533774B04062001

Description:

Includes bibliographical references (p. 693-724) and index.

About the Author

About Patrick Henry Winston

Well-known author Patrick Henry Winston teaches computer science and directs the Artificial Intelligence Laboratory at theMassachusetts Institute of Technology.

0201533774AB04062001

Table of Contents

I. REPRESENTATIONS AND METHODS.
1. The Intelligent Computer.

The Field and the Book.

This Book Has Three Parts.

What Artificial Intelligence Can Do.

Criteria for Success.

Summary

Background.
2. Semantic Nets and Description Matching.

Semantic Nets.

The Describe-and-Match Method.

The Describe-and-Match Method and Analogy Problems.

The Describe-and-Match Method and Recognition of Abstractions.

Problem Solving and Understanding Knowledge.

Summary.

Background.
3. Generate and Test, Means-End Analysis, and Problem Reduction.

The Generate-and-Test Method.

The Means-Ends Analysis Method.

The Problem-Reduction Method.

Summary.

Background.
4. Nets and Basic Search ¥ Nets and Optimal Search.

Blind Methods.

Heuristically Informed Methods.

Summary.

Background.
5. Nets and Optimal Search.

The Best PathRedundant Paths.

Summary.

Background.
6. Trees and Adversarial Search.

Algorithmic Methods.

Heuristic Methods.

Summary.

Background.
7. Rules and Rule Chaining.

Rule-Based Deduction Systems.

Rule-Based Reaction Systems.

Procedures for Forward and Backward Chaining.

Summary.

Background.
8. Rules, Substrates, and Cognitive Modeling.

Rule-Based Systems Viewed as Substrate.

Rule-Based Systems Viewed as Models for Human Problem Solving.

Summary.

Background.
9. Frames and Inheritance.

Frames, Individuals, and Inheritance.

Demon ProceduresFrames, Events, and Inheritance.

Summary.

Background.
10. Frames and Commonsense.

Thematic-role Frames.

Examples Using Take Illustrate How Constraints Interact.

Expansion into Primitive Actions.

Summary.

Background.
11. Numeric Constraints and Propagation.

Propagation of Numbers Through Numeric Constraint Nets.

Propagation of Probability Bounds Through Opinion Nets.

Propagation of Surface Altitudes Through Arrays.

Summary.

Background.
12. Symbolic Constraints and Propagation.

Propagation of Line Labels through Drawing Junctions.

Propagation of Time-Interval Relations.

Five Points of Methodology.

Summary.

Background.
13. Logic and Resolution Proof.

Rules of Inference.

Resolution Proofs.

Summary.

Background.
14. Backtracking and Truth Maintenance.

Chronological and Dependency-Directed Backtracking.

Proof by Constraint Propagation.

Summary.

Background.
15. Planning.

Planning Using If-Add-Delete Operators.

Planning Using Situation Variables.

Summary.

Background.

II. LEARNING AND REGULARITY RECOGNITION.

16. Learning by Analyzing Differences.

Induction Heuristics.

Identification.

Summary.

Background.
17. Learning by Explaining Experience.

Learning about Why People Act the Way they Do.

Learning about Form and Function.

Matching.

Summary.

Background.
18. Learning by Correcting Mistakes.

Isolating Suspicious Relations.

Intelligent Knowledge Repair.

Summary.

Background.
19. Learning by Recording Cases.

Recording and Retrieving Raw Experience.

Finding Nearest Neighbors.

A Fast Serial Procedure Finds the Nearest Neighbor in Logarithmic Time.

Parallel Hardware Finds Nearest Neighbors Even Faster.

Summary.

Background.
20. Learning by Managing Multiple Models.

The Version-Space Method.

Version-Space Characteristics.

Summary.

Background.
21. Learning by Building Identification Trees.

From Data to Identification Trees.

From Trees to Rules.

Summary.

Background.
22. Learning by Training Neural Nets.

Simulated Neural Nets.

Hill Climbing and Back Propagation.

Back-Propagation Characteristics.

Summary.

Background.
23. Learning by Training Perceptrons.

Perceptrons and Perceptron Learning.

What Perceptrons Can and Cannot Do.

Summary.

Background.
24. Learning by Training Approximation Nets.

Interpolation and Approximation Nets.

Biological Implementation.

Summary.

Background.
25. Learning by Simulating Evolution.

Survival of the Fittest.

Genetic Algorithms.

Survival of the Most Diverse.

Summary.

Background.

III. VISION AND LANGUAGE.

26. Recognizing Objects.

Linear Image Combinations.

Establishing Point Correspondence.

Summary.

Background.
27. Describing Images.

Computing Edge Distance.

Computing Surface Direction.

Summary.

Background.
28. Expressing Language Constraints.

The Search for an Economical Theory.

The Search for a Universal Theory.

Competence versus Performance.

Summary.

Background.
29. Responding to Questions and Commands.

Syntactic Transition Nets.

Semantic Transition Trees.

Summary.

Background.
Appendix: Relational Databases.

Relational Databases Consist of Tables Containing Records.

Relations Are Easy to Modify.

Records and Fields Are Easy to Extract.

Relations Are Easy to Combine.

Summary.
Exercises.

Bibliography.

Index.

Colophon. 0201533774T04062001

Product Details

ISBN:
9780201533774
Author:
Winston, Patrick H.
Publisher:
Addison-Wesley Professional
Author:
Winston
Location:
Reading, Mass. :
Subject:
Artificial Intelligence
Subject:
Artificial Intelligence - General
Subject:
Intelligence (AI) & Semantics
Subject:
Computers-Reference - General
Copyright:
Edition Number:
3
Edition Description:
Trade paper
Series:
A-W Series in Computerscience
Series Volume:
0000
Publication Date:
April 1992
Binding:
TRADE PAPER
Grade Level:
College/higher education:
Language:
English
Illustrations:
Yes
Pages:
750
Dimensions:
9 x 7.5 x 1.6 in 1188 gr

Other books you might like

  1. Stl Tutorial & Reference Guide 1ST... Used Hardcover $9.95
  2. What do you care what other people... Used Trade Paper $4.50
  3. C Programming Language Ansi C 2ND... Used Trade Paper $47.50

Related Subjects

Computers and Internet » Artificial Intelligence » General
Computers and Internet » Computers Reference » General

Artificial Intelligence (3RD 92 Edition) Used Hardcover
0 stars - 0 reviews
$111.00 In Stock
Product details 750 pages Addison Wesley Publishing Company - English 9780201533774 Reviews:
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.