 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$79.99
New Trade Paper
Ships in 1 to 3 days
Available for Instore Pickup
in 7 to 12 days
This title in other editionsOther titles in the HP Professional series:
Modern Cryptography: Theory and Practice (Paperback) (HP Professional)by Wenbo Mao
Synopses & ReviewsPublisher Comments:"This book would be a good addition to any cryptographer's bookshelf. The book is selfcontained; it presents all the background material to understand an algorithm and all the development to prove its security. I'm not aware of another book that's as complete as this one." Christian Paquin, Cryptographic/Security Developer, Silanis Technology Inc. "The book is both complete, and extraordinarily technically accurate. It would certainly be a useful addition to any cryptographer's or cryptoengineer's library." Marcus Leech, Advisor, Security Architecture and Planning, Nortel Networks Build more secure crypto systemsand prove their trustworthiness Modern Cryptography is the indispensable resource for every technical professional who needs to implement strong security in realworld applications. Leading HP security expert Wenbo Mao explains why "textbook" crypto schemes, protocols, and systems are profoundly vulnerable by revealing realworldscenario attacks. Next, he shows how to realize cryptographic systems and protocols that are truly "fit for application"and formally demonstrates their fitness. Mao presents practical examples throughout and provides all the mathematical background you'll need. Coverage includes:
Mao introduces formal and reductionist methodologies to prove the "fitforapplication" security of practical encryption, signature, signcryption, and authentication schemes. He gives detailed explanations for zeroknowledge protocols: definition, zeroknowledge properties, equatability vs. simulatability, argument vs. proof, roundefficiency, and noninteractive versions. Synopsis:Many cryptographic schemes and protocols, especially those based on publickeycryptography, have basic or socalled textbook crypto versions, as these versionsare usually the subjects for many textbooks on cryptography. This book takes adifferent approach to introducing cryptography: it pays much more attention tofitforapplication aspects of cryptography. It explains why textbook crypto isonly good in an ideal world where data are random and bad guys behave nicely.It reveals the general unfitness of textbook crypto for the real world by demonstratingnumerous attacks on such schemes, protocols and systems under variousrealworld application scenarios. This book chooses to introduce a set of practicalcryptographic schemes, protocols and systems, many of them standards or de factoones, studies them closely, explains their working principles, discusses their practicalusages, and examines their strong (i.e., fitforapplication) security properties, oftenwith security evidence formally established. The book also includes selfcontainedtheoretical background material that is the foundation for modern cryptography.
About the AuthorWENBO MAO, PhD, is a Technical Contributor to the Trusted Systems Lab at HewlettPackard Laboratories, Bristol, UK. Mao leads HP's participation and research activities in Computer Aided Solutions to Secure Electronic Commerce Transactions (CASENET), a research project funded by the European Union. His research interests include cryptography, computer security, and formal methods. He is a member of the International Association for Cryptographic Research (IACR), the Institute of Electrical and Electronics Engineers (IEEE), and the British Computer Society (BCS). Table of ContentsA Short Description of the Book.
Preface.
List of Figures.
List of Algorithms, Protocols and Attacks.
I. INTRODUCTION. 1. Beginning with a Simple Communication Game.
A Communication Game. Criteria for Desirable Cryptographic Systems and Protocols. Chapter Summary. Exercises.
2. Wrestling between Safeguard and Attack.
Introduction. Encryption. Vulnerable Environment (the DolevYao Threat Model). Authentication Servers. Security Properties for Authenticated Key Establishment. Protocols for Authenticated Key Establishment Using Encryption. Chapter Summary. Exercises.
II MATHEMATICAL FOUNDATIONS. Standard Notation. 3. Probability and Information Theory.
Introduction. Basic Concept of Probability. Properties. Basic Calculation. Random Variables and their Probability Distributions. Birthday Paradox. Information Theory. Redundancy in Natural Languages. Chapter Summary. Exercises. 4. Computational Complexity.
Introduction. Turing Machines. Deterministic Polynomial Time. Probabilistic Polynomial Time. Nondeterministic Polynomial Time. NonPolynomial Bounds. Polynomialtime Indistinguishability. Theory of Computational Complexity and Modern Cryptography. Chapter Summary. Exercises. 5. Algebraic Foundations.
Introduction. Groups. Rings and Fields. The Structure of Finite Fields. Group Constructed Using Points on an Elliptic Curve. Chapter Summary. Exercises. 6. Number Theory.
Introduction. Congruences and Residue Classes. Euler's Phi Function. The Theorems of Fermat, Euler and Lagrange. Quadratic Residues. Square Roots Modulo Integer. Blum Integers. Chapter Summary. Exercises.
III. BASIC CRYPTOGRAPHIC TECHNIQUES. 7. Encryption—Symmetric Techniques.
Introduction. Definition. Substitution Ciphers. Transposition Ciphers. Classical Ciphers: Usefulness and Security. The Data Encryption Standard (DES). The Advanced Encryption Standard (AES). Confidentiality Modes of Operation. Key Channel Establishment for Symmetric Cryptosystems. Chapter Summary. Exercises.
8. Encryption—Asymmetric Techniques.
Introduction. Insecurity of “Textbook Encryption Algorithms”. The DiffieHellman Key Exchange Protocol. The DiffieHellman Problem and the Discrete Logarithm Problem. The RSA Cryptosystem (Textbook Version). Cryptanalysis Against Publickey Cryptosystems. The RSA Problem. The Integer Factorization Problem. Insecurity of the Textbook RSA Encryption. The Rabin Cryptosystem (Textbook Version). Insecurity of the Textbook Rabin Encryption. The ElGamal Cryptosystem (Textbook Version). Insecurity of the Textbook ElGamal Encryption. Need for Stronger Security Notions for Publickey Cryptosystems. Combination of Asymmetric and Symmetric Cryptography. Key Channel Establishment for Publickey Cryptosystems. Chapter Summary. Exercises.
9. In an Ideal World: Bit Security of the Basic PublicKey Cryptographic Functions.
Introduction. The RSA Bit. The Rabin Bit. The ElGamal Bit. The Discrete Logarithm Bit. Chapter Summary. Exercises.
10. Data Integrity Techniques.
Introduction. Definition. Symmetric Techniques. Asymmetric Techniques I:Digital Signatures. Asymmetric Techniques II: Data Integrity without Source Identification. Chapter Summary. Exercises.
IV. AUTHENTICATION. 11. Authentication Protocols—Principles.
Introduction. Authentication and Refined Notions. Convention. Basic Authentication Techniques. Passwordbased Authentication. Authenticated Key Exchange Based on Asymmetric Cryptography. Typical Attacks on Authentication Protocols. A Brief Literature Note. Chapter Summary. Exercises.
12. Authentication Protocols—The Real World.
Introduction. Authentication Protocols for Internet Security. The Secure Shell (SSH) Remote Login Protocol. The Kerberos Protocol and its Realization in Windows 2000. SSL and TLS. Chapter Summary. Exercises.
13. Authentication Framework for PublicKey Cryptography.
Introduction. DirectoryBased Authentication Framework. NonDirectory Based Publickey Authentication Framework. Chapter Summary. Exercises.
V. FORMAL APPROACHES TO SECURITY ESTABLISHMENT. 14. Formal and Strong Security Definitions for PublicKey Cryptosystems.
Introduction. A Formal Treatment for Security. Semantic Security—the Debut of Provable Security. Inadequacy of Semantic Security. Beyond Semantic Security. Chapter Summary. Exercises.
15. Provably Secure and Efficient PublicKey Cryptosystems.
Introduction. The Optimal Asymmetric Encryption Padding. The CramerShoup Publickey Cryptosystem. An Overview of Provably Secure Hybrid Cryptosystems. Literature Notes on Practical and Provably Secure Publickey Cryptosystems. Chapter Summary. Exercises.
16. Strong and Provable Security for Digital Signatures.
Introduction. Strong Security Notion for Digital Signatures. Strong and Provable Security for ElGamalfamily Signatures. Fitforapplication Ways for Signing in RSA and Rabin. Signcryption. Chapter Summary. Exercises.
17. Formal Methods for Authentication Protocols Analysis.
Introduction. Toward Formal Specification of Authentication Protocols. A Computational View of Correct Protocols—the BellareRogaway Model. A Symbolic Manipulation View of Correct Protocols. Formal Analysis Techniques: State System Exploration. Reconciling Two Views of Formal Techniques for Security. Chapter Summary. Exercises.
VI. CRYPTOGRAPHIC PROTOCOLS. 18. ZeroKnowledge Protocols.
Introduction. Basic Definitions. Zeroknowledge Properties. Proof or Argument? Protocols with Twosidederror. Round Efficiency. Noninteractive Zeroknowledge. Chapter Summary. Exercises.
19. Returning To “Coin Flipping over Telephone”.
Blum's “CoinFlippingbyTelephone” Protocol. Security Analysis. Efficiency. Chapter Summary.
20.Afterremark.
Bibliography. Subject Index. What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated Subjects
Computers and Internet » Internet » General


