We Need Diverse Ya Sale

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Visit our stores

    Recently Viewed clear list

    Original Essays | June 2, 2015

    Matthieu Ricard: IMG The Altruism Revolution

    With the famous phrase "Nature, red in tooth and claw," the Victorian poet Tennyson expressed the challenge that the emerging science of evolution... Continue »

Qualifying orders ship free.
New Trade Paper
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
2 Remote Warehouse Geology- General

This title in other editions

Introduction to Geochemistry: Principles and Applications


Introduction to Geochemistry: Principles and Applications Cover


Synopses & Reviews

Publisher Comments:

This book is intended to serve as a text for an introductory course in geochemistry for undergraduate/graduate students with at least an elementary–level background in earth sciences, chemistry, and mathematics.  The text, containing 83 tables and 181 figures, covers a wide variety of topics — ranging from atomic structure to chemical and isotopic equilibria to modern biogeochemical cycles — which are divided into four interrelated parts: Crystal Chemistry; Chemical Reactions (and biochemical reactions involving bacteria); Isotope Geochemistry (radiogenic and stable isotopes); and The Earth Supersystem, which includes discussions pertinent to the evolution of the solid Earth, the atmosphere, and the hydrosphere.

In keeping with the modern trend in the field of geochemistry, the book emphasizes computational techniques by developing appropriate mathematical relations, solving a variety of problems to illustrate application of the mathematical relations, and leaving a set of questions at the end of each chapter to be solved by students.  However, so as not to interrupt the flow of the text, involved chemical concepts and mathematical derivations are separated in the form of boxes.  Supplementary materials are packaged into ten appendixes that include a standard–state (298.15 K, 1 bar) thermodynamic data table and a listing of answers to selected chapter–end questions.

About the Author

Kula C. Misra is a Professor of Geology (Emeritus) at the University of Tennessee where he has taught geochemistry, economic geology, and environmental geology for more than 30 years.  He received a M.Tech degree in Applied Geology from the Indian Institute of Technology (Kharagpur) and, after working for about ten years as a field geologist, a Ph.D. degree in Geology from the University of Western Ontario (Canada).  His research papers have been published in several professional journals, and he is the author of the textbook Understanding Mineral Deposits published in the year 2000.  He is a member of several professional organizations and has served as a consultant to corporations and government agencies on subjects related to mineral deposits and environmental geochemistry.

Table of Contents



Chapter 1. Introduction.

1.1 Units of measurement.

1.2 The Geologic Time Scale.

1.3 Recapitulation.

1.4 Questions.


Chapter 2. Atomic Structure.

2.1 Historical development.

2.2 The working model.

2.3 The ground state electronic configuration of elements.

2.4 Chemical behavior of elements.

2.5 Summary.

2.6 Recapitulation.

2.7 Questions.

Chapter 3. Chemical Bonding.

.3.1 Ionic bonding.

3.2 Crystal structures of silicate minerals.

3.3 Ionic substitution in crystals.

3.4 Crystal–field theory.

3.5 Isomorphism, polymorphism, and solid solutions.

3.6 Covalent bonding.

3.7 Metallic bonds.

3.8 Van der Waals bonds.

3.9 Hydrogen bond.

3.10 Comparison of bond types .

3.11 Goldschmidt's classification of elements.

3.12 Summary.

3.13 Recapitulation.

3.14 Questions.


Chapter 4. Basic Thermodynamic Concepts.

4.1 Chemical equilibrium.

4.2 Thermodynamic systems.

4.3 Laws of thermodynamics.

4.4 Auxiliary thermodynamic functions.

4.5 Free energy change of a reaction at T and P .

4.6 Conditions for thermodynamic equilibrium and spontaneity in a closed system.

4.7 Metastability .

4.8 Computation of simple P–T phase diagrams.

4.9 Thermodynamic data tables.

4.10 Summary.

4.11 Recapitulation.

4.12 Questions.

Chapter 5. Thermodynamics of Solutions.

5.1 Chemical potential.

5.2 Variation of chemical potential ( ) with temperature, pressure, and composition.

5.3 Relation between Gibbs free energy change and equilibrium constant for a reaction.

5.4 Gases.

5.5 Ideal solutions involving condensed phases.

5.6 Non–ideal solutions involving condensed phases.

5.7 Excess functions.

5.8 Ideal crystalline solutions.

5.9 Non–ideal crystalline solutions.

5.10 Summary.

5.11 Recapitulation.

5.12 Questions.

Chapter 6. Geothermometry and Geobarometry.

6.1 Tools for geothermobarometry.

6.2 Selection of reactions for thermobarometry.

6.3 Dependence of equilibrium constant on temperature and pressure.

6.4 Univariant reactions and displaced equilibria.

6.5 Exchange reactions.

6.6 Solvus equilibria.

6.7 Uncertainties in thermobarometric estimates.

6.8 Fluid inclusion thermobarometry.

6.9 Summary .

6.10 Recapitulation.

6.11 Questions.

Chapter 7. Reactions Involving Aqueous Solutions.

7.1 Water's a solvent.

7.2 Activity – concentration relationships in aqueous electrolytic solutions.

7.3 Dissociation of acids and bases.

7.4 Solubility of salts.

7.5 Dissociation of H2CO3 acid — the carbonic acid system.

7.6 Acidity and alkalinity of a solution.

7.7 pH buffers.

7.8 Dissolution and precipitation of calcium carbonate.

7.9 Chemical weathering of silicate minerals.

7.10 Summary.

7.11 Recapitulation.

7.12 Questions.

Chapter 8. Oxidation-Reduction Reactions.

8.1 Definitions.

8.2 Voltaic cells.

8.3 Relationship between free energy change (DGr) and electrode potential (E) — the Nernst equation

8.4 Oxidation potential (Eh) .

8.5 The variable pe.

8.6 Eh–pH stability diagrams.

8.7 Role of microorganisms in oxidation–reduction reactions.

8.8 Oxidation of sulfide minerals.

8.9 Oxygen fugacity.

8.10 Summary.

8.11 Recapitulation.

8.12 Questions.

Chapter 9. Kinetics of Chemical Reactions.

9.1 Rates of chemical reactions: Basic principles.

9.2 Temperature dependence of rate constants.

9.3 Relationship between rate and free energy change of an elementary reaction (DGr) .

9.4 Catalysts.

9.5 Mass transfer in aqueous solutions.

9.6 Kinetics of geochemical processes – some examples.

9.7 Summary.

9.8 Recapitulation.

9.9 Questions.


Chapter 10. Radiogenic Isotopes.

10.1 Radioactive decay.

10.2 Principles of radiometric geochronology.

10.3 Selected methods of geochronology.

10.4 Isotope ratios as petrogenetic indicators.

10.5 Summary.

10.6 Recapitulation.

10.7 Questions.

Chapter 11. Stable Isotopes.

11.1 Isotopic fractionation.

11.2 Types of isotopic fractionation.

11.3 Stable isotope geothermometry.

11.4 Evaporation and condensation processes.

11.5 Source(s) of water in hydrothermal fluids.

11.6 Estimation of water:rock ratios from oxygen isotope ratios.

11.7 Sulfur isotopes in sedimentary systems.

11.8 Mass–independent fractionation (MIF) of sulfur isotopes.

11.9 Iron isotopes: Geochemical applications.

11.10 Summary.

11.11 Recapitulation.

11.12 Questions.


Chapter 12. The Core – Mantle – Crust System.

12.1 Cosmic perspective.

12.2 Evolution of the Earth.

12.3 Generation and crystallization of magmas.

12.4 Geochemical discrimination of paleotectonic settings of mafic volcanic suites.

12.5 Summary.

12.6 Recapitulation.

12.7 Questions.

Chapter 13. The Crust – Hydrosphere – Atmoshere System.

3.1 The present atmosphere.

13.2 Evolution of the Earth's atmosphere over geologic time.

13.3 Air pollution.

13.4 The hydrosphere.

13.5 Evolution of the oceans over geologic time.

13.6 Geosphere – hydrosphere – atmosphere – biosphere interaction; global biogeochemical cycles .

13.7 Summary.

13.8 Recapitulation.

13.9 Questions.


A–1 Units of measurement and physical constants.

A–2 Electronic configurations of elements in ground state.

A–3 First ionization potential, electron affinity, electronegativity (Pauling scale), and coordination numbers of selected elements.

A–4 Thermodynamic symbols.

A–5 Standard state (298.15 K, 105 Pa) thermodynamic data for selected elements, ionic species, and compounds.

A–6 Fugacities of H2O and CO2 in the range 0.5–10.0 kilobars and 200–1000oC .

A–7 Equations for activity coefficients in multi–component regular solutions.

A–8 Some commonly used computer codes for modeling of geochemical processes in aqueous solutions .

A–9 Solar system abundances of the elements in units of number of atoms per 106 silicon atoms.

A–10 Answers to selected end–of–chapter questions.



Product Details

Misra, Kula C.
Misra, Kula
Geochemistry & Mineralogy
geochemical principles, geologic systems, interpreting phase diagrams, geochemistry course, geochemistry book, book on geochemistry
Geology-Rocks and Minerals
geochemical principles, geologic systems, interpreting phase diagrams, geochemistry course
, geochemistry book, book on geochemistry
Publication Date:
250 x 150 x 15 mm 24 oz

Related Subjects

Hobbies, Crafts, and Leisure » Games » General
Humanities » Philosophy » General
Religion » Comparative Religion » General
Science and Mathematics » Chemistry » General
Science and Mathematics » Geology » General
Science and Mathematics » Geology » Rocks and Minerals

Introduction to Geochemistry: Principles and Applications New Trade Paper
0 stars - 0 reviews
$95.95 In Stock
Product details 452 pages Wiley-Blackwell - English 9781405121422 Reviews:
  • back to top


Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.