Master your Minecraft
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Tour our stores


    Recently Viewed clear list


    Best Books of the Year | December 9, 2014

    Aubrey: IMG Best YA Fiction of 2014



    So what is with all the hullabaloo about young adult literature these days? Do we have John Green to blame for getting us sucked in to the tragic... Continue »

    spacer
Qualifying orders ship free.
$129.00
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
1 Remote Warehouse Mathematics- Analysis General

More copies of this ISBN

This title in other editions

Interpolation Processes: Basic Theory and Applications (Springer Monographs in Mathematics)

by

Interpolation Processes: Basic Theory and Applications (Springer Monographs in Mathematics) Cover

 

Synopses & Reviews

Publisher Comments:

The classical books on interpolation address numerous negative results, i.e., results on divergent interpolation processes, usually constructed over some equidistant systems of nodes. The authors present, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. In this special, but fundamental and important field of real analysis the authors present the state of art. Some 500 references are cited, including many new results of the authors. Basic tools in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.) as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. Beside the basic properties of the classical orthogonal polynomials the book provides new results on nonclassical orthogonal polynomials including methods for their numerical construction.

Synopsis:

This book presents, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other books and monographs on approximation theory and numerical mathematics.

About the Author

Gradimir V. Milovanovic is Professor of the University of Niš and Corresponding member of the Serbian Academy of Sciences and Arts.

Table of Contents

1. Constructive Elements and Approaches in Approximation Theory.- 1.1 Introduction to Approximation Theory.- 1.1.1 Basic notions.- 1.1.2 Algebraic and trigonometric polynomials.- 1.1.3 Best approximation by polynomials.- 1.1.4 Chebyshev polynomials.- 1.1.5 Chebyshev extremal problems.- 1.1.6 Chebyshev alternation theorem.- 1.1.7 Numerical methods.- 1.2 Basic Facts on Trigonometric Approximation.- 1.2.1 Trigonometric kernels.- 1.2.2 Fourier series and sums.- 1.2.3 Moduli of smoothness, best approximation and Besov spaces.- 1.3 Chebyshev Systems and Interpolation.- 1.3.1 Chebyshev systems and spaces.- 1.3.2 Algebraic Lagrange interpolation.- 1.3.3 Trigonometric interpolation.- 1.3.4 Riesz interpolation formula.- 1.3.5 A general interpolation problem.- 1.4 Interpolation by Algebraic Polynomials.- 1.4.1 Representations and computation of interpolation polynomials.- 1.4.2 Interpolation array and Lagrange operators.- 1.4.3 Interpolation error for some classes of functions.- 1.4.4 Uniform convergence in the class of analytic functions.- 1.4.5 Bernstein's example of pointwise divergence.- 1.4.6 Lebesgue function and some estimates for the Lebesgue constant.- 1.4.7 Algorithm for finding optimal nodes.- 2. Orthogonal Polynomials and Weighted Polynomial Approximation.- 2.1 Orthogonal Systems and Polynomials.- 2.1.1 Inner product space and orthogonal systems.- 2.1.2 Fourier expansion and best approximation.- 2.1.3 Examples of orthogonal systems.- 2.1.4 Basic facts on orthogonal polynomials and extremal problems.- 2.1.5 Zeros of orthogonal polynomials.- 2.2 Orthogonal Polynomials on the Real Line.- 2.2.1 Basic properties.- 2.2.2 Asymptotic properties of orthogonal polynomials.- 2.2.3 Associated polynomials and Christoffel numbers.- 2.2.4 Functions of the second kind and Stieltjes polynomials.- 2.3 Classical Orthogonal Polynomials.- 2.3.1 Definition of the classical orthogonal polynomials.- 2.3.2 General properties of the classical orthogonal polynomials.- 2.3.3 Generating function.- 2.3.4 Jacobi polynomials.- 2.3.5 Generalized Laguerre polynomials.- 2.3.6 Hermite polynomials.- 2.4 Nonclassical Orthogonal Polynomials.- 2.4.1 Semi-classical orthogonal polynomials.- 2.4.2 Generalized Gegenbauer polynomials.- 2.4.3 Generalized Jacobi polynomials.- 2.4.4 Sonin-Markov orthogonal polynomials.- 2.4.5 Freud orthogonal polynomials.- 2.4.6 Orthogonal polynomials with respect to Abel, Lindelöf, and logistic weights.- 2.4.7 Strong non-classical orthogonal polynomials.- 2.4.8 Numerical construction of orthogonal polynomials.- 2.5 Weighted Polynomial Approximation.- 2.5.1 Weighted functional spaces, moduli of smoothness and K-functionals.- 2.5.2 Weighted best polynomial approximation on (-1,1).- 2.5.3 Weighted approximation on the semi-axis.- 2.5.4 Weighted approximation on the real line.- 2.5.5 Weighted polynomial approximation of functions having isolated interior singularities.- 3. Trigonometric Approximation.- 3.1 Approximating Properties of Operators.- 3.1.1 Approximation by Fourier sums.- 3.1.2 Approximation by Fejér and de la Vallée Poussin means.- 3.2 Discrete Operators.- 3.2.1 A quadrature formula.- 3.2.2 Discrete versions of Fourier and de la Vallée Poussin sums.- 3.2.3 Marcinkiewicz inequalities.- 3.2.4 Uniform approximation.- 3.2.5 Lagrange interpolation error in Lp.- 3.2.6 Some estimates of the interpolation errors in L1-Sobolev spaces.- 3.2.7 The weighted case.- 4. Algebraic Interpolation in Uniform Norm.- 4.1 Introduction and Preliminaries.- 4.1.1 Interpolation at zeros of orthogonal polynomials.- 4.1.2 Some auxiliary results.- 4.2 Optimal Systems of Nodes.- 4.2.1 Optimal systems of knots on (-1,1).- 4.2.2 Additional nodes method with Jacobi zeros.- 4.2.3 Other "optimal" interpolation processes.- 4.2.4 Some simultaneous interpolation processes.- 4.3 Weighted Interpolation.- 4.3.1 Weighted interpolation at Jacobi zeros.- 4.3.2 Lagrange interpolation in Sobolev spaces.- 4.3.3 Interpolation at Laguerre zeros.- 4.3.4 Interpolation at Hermite zeros.- 4.3.5 Interpolation of functions with internal isolated singularities.- 5. Applications.- 5.1 Quadrature Formulae.- 5.1.1 Introduction.- 5.1.2 Some remarks on Newton-Cotes rules with Jacobi weights.- 5.1.3 Gauss-Christoffel quadrature rules.- 5.1.4 Gauss-Radau and Gauss-Lobatto quadrature rules.- 5.1.5 Error estimates of Gaussian rules for some classes of functions.- 5.1.6 Product integration rules.- 5.1.7 Integration of periodic functions on the real line with rational weight.- 5.2 Integral Equations.- 5.2.1 Some basic facts.- 5.2.2 Fredholm integral equations of the second kind.- 5.2.3 Nyström method.- 5.3 Moment-Preserving Approximation.- 5.3.1 The standard L2-approximation.- 5.3.2 The constrained L2-polynomial approximation.- 5.3.3 Moment-preserving spline approximation.- 5.4 Summation of Slowly Convergent Series.- 5.4.1 Laplace transform method.- 5.4.2 Contour integration over a rectangle.- 5.4.3 Remarks on some slowly convergent power series.- References.- Index.

Product Details

ISBN:
9783540683469
Author:
Mastroianni, Giuseppe
Publisher:
Springer
Author:
Milovanovic, Gradimir V.
Author:
Milovanovic, Gradimir
Subject:
Functional Analysis
Subject:
Mathematical Analysis
Subject:
Gaussian quadratures
Subject:
Interpolation
Subject:
MSC(2000): 33-xx, 41-xx, 42Axx, 45A05, 45B05, 45H05, 65B10,
Subject:
Integral equations
Subject:
Orthogonal polynomials.
Subject:
polynomial approximation
Subject:
Special functions
Subject:
Sequences, Series, Summability
Subject:
Fourier analysis
Subject:
Integral Equations <P>There are many books on approximation theory, including interpolation methods that appeared in the last fifty years, but a few of them are devoted only to interpolation processes as is this book</P>
Subject:
Mathematics : Functional Analysis
Copyright:
Edition Description:
Book
Series:
Springer Monographs in Mathematics
Publication Date:
20081117
Binding:
HARDCOVER
Language:
English
Illustrations:
Y
Pages:
460
Dimensions:
235 x 155 mm

Other books you might like

  1. Discrete Spectral Synthesis and Its... New Hardcover $150.50
  2. Exploring Multivariate Data with the... New Hardcover $190.25
  3. Applied Stochastic Processes... New Trade Paper $82.75
  4. Serre's Problem on Projective... New Trade Paper $119.00
  5. Extreme Value Theory (Springer... New Hardcover $77.50

Related Subjects


Science and Mathematics » Biology » Microbiology
Science and Mathematics » Chemistry » Chemical Engineering
Science and Mathematics » Mathematics » Analysis General
Science and Mathematics » Mathematics » Functional Analysis
Science and Mathematics » Physics » General

Interpolation Processes: Basic Theory and Applications (Springer Monographs in Mathematics) New Hardcover
0 stars - 0 reviews
$129.00 In Stock
Product details 460 pages Springer - English 9783540683469 Reviews:
"Synopsis" by , This book presents, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other books and monographs on approximation theory and numerical mathematics.
spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.