Master your Minecraft
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Tour our stores


    Recently Viewed clear list


    Original Essays | November 7, 2014

    Karelia Stetz-Waters: IMG The Hot Sex Tip Cosmo Won't Tell You



    Cosmopolitan Magazine recently released an article titled "28 Mind-Blowing Lesbian Sex Positions." Where was this vital information when I was a... Continue »

    spacer

This item may be
out of stock.

Click on the button below to search for this title in other formats.


Check for Availability
Add to Wishlist

Vehicle Powertrain Systems: Integration and Optimization

by

Vehicle Powertrain Systems: Integration and Optimization Cover

 

Synopses & Reviews

Publisher Comments:

The powertrain is at the heart of vehicle design; the engine – whether it is a conventional, hybrid or electric design – provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle.

The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach – to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability.

Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R)  software and many example programmes for vehicle calculations are provided in the text.

Key features:

  • Structured approach to explaining the fundamentals of powertrain engineering
  • Integration of powertrain components into overall vehicle design
  • Emphasis on practical vehicle design issues
  • Extensive use of practical problems and worked examples
  • Provision of MATLAB(R) programmes for the reader to use in vehicle performance calculations

This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry.

Table of Contents

Chapter 1 Vehicle powertrain concepts

1.1 Powertrain systems 3

1.2 Powertrain components 11

1.3 Vehicle performance 13

1.4 Driver behaviour 18

1.5 Role of modelling 20

1.6 Aim of book 23

1.7 Further reading 24

1.8 References 24

Chapter 2  Power generation characteristics of Internal Combustion Engines

2.1 Introduction 4

2.2 Engine power generation principles 5

2.3 Engine modelling 46

2.4 Multi cylinder engines 91

2.5 Engine torque maps 107

2.6 Magic Torque (MT) formula for engine torque 117

2.7 Engine Management System 117

2.8 Net output power 117

2.9 Concluding remarks 117

2.10 Further reading 117

2.11 References 117

2.12 Review questions 117

2.13 Problems 117

Chapter 3 Vehicle Longitudinal Dynamics

3.1. Introduction 4

3.2. Torque generators 5

3.3. Tractive force 9

3.4. Resistive forces 26

3.5. Vehicle Constant Power Performance (CPP) 43

3.6. Constant Torque performance (CTP) 71

3.7. Fixed Throttle Performance (FTP) 82

3.8. Throttle Pedal Cycle performance (PCP) 103

3.9. Effect of rotating masses 108

3.10. Tyre slip 118

3.12. Vehicle coast down 129

3.13. Driveline losses 140

3.14. Concluding remarks 149

3.15. Further reading 149

3.16. References 150

3.17. Review questions 151

3.18. Problems 152

Chapter 4  Transmissions

4.1. Introduction 4

4.2. Need for gearbox 4

4.3. Design of gearbox ratios 7

4.4. Gearbox kinematics and tooth numbers 41

4.5. Manual transmissions 54

4.6. Automatic transmissions 127

4.7. CVTs 140

4.8. Concluding remarks 151

4.9. Further reading 152

4.10. References 153

4.11. Review questions 154

4.12. Problems 156

Chapter 5  Fuel Consumption

5.1 Introduction 4

5.2 Engine energy consumption 5

5.3 Driving cycles 11

5.4 Vehicle fuel consumption 19

5.5 Shifting effects 33

5.6 Software 46

5.7 Automated gearshifts 51

5.8 Other solutions for fuel efficiency 57

5.9 Concluding remarks 65

5.10 Further reading 66

5.11 References 68

5.12 Review questions 69

5.13 Problems 71

Chapter 6 Driveline dynamics

6.1 Introduction 3

6.2 Modelling driveline dynamics 4

6.3 Bond graph models of driveline components 11

6.4 Driveline models 21

6.5 Analysis 28

6.6 Concluding remarks 51

6.7 Further reading 52

6.8 References 52

6.9 Review questions 53

6.10 Problems 54

Chapter 7 Hybrid electric vehicles

7.1. Introduction 4

7.2. Types of hybrid electric vehicles 5

7.3. Power split devices 20

7.4. HEV component characteristics 49

7.5. HEV performance analysis 70

7.6. HEV component sizing 82

7.7. Power management 122

7.8. Concluding remarks 135

7.9. Further reading 136

7.10. References 137

7.11. Review questions 138

7.12. Problems 139

Product Details

ISBN:
9781119958369
Subtitle:
Integration and Optimization
Publisher:
Wiley
Author:
Mashadi, Behrooz
Author:
Crolla, David
Author:
Mashhadi, Behrooz
Subject:
Drafting & Mechanical Drawing
Subject:
Automotive engineering
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
Automobiles - Power trains
Subject:
Technology & Engineering : Drafting & Mechanical Drawing
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
Transportation : Automotive - General
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Subject:
automotive engineering, vehicle powertrain concepts, IC engine, longitudinal vehicle dynamics, transmissions, fuel economy, driveline dynamics, traction control systems, hybrid systems, vehicle design constraints, automotive industry, mechanical engineeri
Copyright:
Publication Date:
20111118
Binding:
Electronic book text in proprietary or open standard format
Language:
English
Illustrations:
Y
Pages:
560
Dimensions:
244 x 168 x 15 mm 24 oz

Related Subjects

Arts and Entertainment » Architecture » Drafting
Engineering » Engineering » General Engineering
Transportation » Automotive » General

Vehicle Powertrain Systems: Integration and Optimization
0 stars - 0 reviews
$ In Stock
Product details 560 pages Wiley - English 9781119958369 Reviews:
spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.