Summer Reading Sale
 
 

Recently Viewed clear list


Original Essays | Yesterday, 10:00am

Jessica Valenti: IMG Full Frontal Feminism Revisited



It is arguably the worst and best time to be a feminist. In the years since I first wrote Full Frontal Feminism, we've seen a huge cultural shift in... Continue »
  1. $11.90 Sale Trade Paper add to wish list

spacer

This item may be
out of stock.

Click on the button below to search for this title in other formats.


Check for Availability
Add to Wishlist

High-Pressure Rheology for Quantitative Elastohydrodynamics

by

High-Pressure Rheology for Quantitative Elastohydrodynamics Cover

 

Synopses & Reviews

Publisher Comments:

Computational elastohydrodynamics, a part of tribology, has existed happily enough for about fifty years without the use of accurate models for the rheology of the liquids used as lubricants. For low molecular weight liquids, such as low viscosity mineral oils, it has been possible to calculate, with precision, the film thickness in a concentrated contact provided that the pressure and temperature are relatively low, even when the pressure variation of viscosity is not accurately modelled in detail. Other successes have been more qualitative in nature, using effective properties which come from the fitting of parameters used in calculations to experimental measurements of the contact behaviour, friction or film thickness. High Pressure Rheology for Quantitative Elastohydrodynamicsis intended to provide a sufficiently accurate framework for the rheology of liquids at elevated pressure that it may be possible for computational elastohydrodynamics to discover the relationships between the behaviour of a lubricated concentrated contact and the measurable properties of the liquid lubricant. The required high-pressure measurement techniques are revealed in detail and data are presented for chemically well-defined liquids that may be used as quantitative reference materials. * Presents the property relations required for a quantitative calculation of the tribological behaviour of lubricated concentrated contacts. * Details of high-pressure experimental techniques. * Complete description of the pressure and temperature dependence of viscosity for high pressures. * Description of the shear dependence of viscosity for low-molecular-weight liquids. * Some little-known limitations on EHL modelling.

Synopsis:

Computational elastohydrodynamics, a part of tribology, has existed happily enough for about fifty years without the use of accurate models for the rheology of the liquids used as lubricants. For low molecular weight liquids, such as low viscosity mineral

Table of Contents

Chapter 1. An Introduction to Elastohydrodynamic Lubrication — 1.1 Lubrication — 1.2 Concentrated Contact Lubrication — 1.3 Full Elastohydrodynamic Lubrication — 1.4 Experimental Elastohydrodynamics — 1.5 Conclusion — Chapter 2. An Introduction to the Rheology of Polymeric Liquids — 2.1 Background — 2.2 The Newtonian Model — 2.3 Material Functions for Polymeric Liquids — 2.4 Rheological Models — 2.5 Time-Temperature-Pressure Superposition — 2.6 Liquid Failure — Chapter 3. General High-Pressure Experimental Techniques — 3.1 Background — 3.2 Pressure Containment — 3.3 Closures — 3.4 Feed-throughs — 3.5 Pressure Generation and Measurement — 3.6 Hydrostatic Media and Volume Compensation — Chapter 4. Compressibility and the Equation of State — 4.1 Background — 4.2 PVT Measurement Techniques and Results — 4.3 Empirical Equations of State — Chapter 5. The Pressure and Temperature Dependence of the Low-Shear Viscosity — 5.1 Background — 5.2 High-Pressure Viscometers — 5.3 General Pressure-Viscosity Response and Results for Pure Organic Liquids and Lubricants — Chapter 6. Models for the Temperature and Pressure Dependence of the Low-Shear Viscosity — 6.1 Introduction — 6.2 Models for the Temperature-Viscosity Response — 6.3 Pressure Fragility and Empirical Models for High Pressure Behavior — 6.4 The Pressure-Viscosity Coefficient and Empirical Models for Low Pressure Behavior — 6.5 Empirical Models for Large Pressure Intervals — 6.6 Models Based on Free Volume Theory — 6.7 Generalized Temperature-Pressure-Viscosity Models — 6.8 Multi Component Systems — Chapter 7. Measurement Techniques for the Shear Dependence of Viscosity at Elevated Pressure — 7.1 Introduction — 7.2 Phenomena Producing Behavior Similar to Shear-Thinning — 7.3 Rheometers for High Pressure — Chapter 8. The Shear Dependence of Viscosity at Elevated Pressure — 8.1 Introduction — 8.2 Normal Stress Differences at Elevated Pressures — 8.3 The Origin of Non-Newtonian Behavior in Low-Molecular-Weight Liquids at Elevated Pressures — 8.4 Time-Temperature-Pressure Superposition — 8.5 The Competition between Thermal Softening and Shear-Thinning — 8.6 Multi Component Systems — 8.7 The Power-Law Exponent and the Second Newtonian Viscosity — Chapter 9. Glass Transition and Related Transitions in Liquids under Pressure — 9.1 Measurements of Glass Transition at Elevated Pressure — 9.2 Measurements of Dielectric Transition at Elevated Pressure — 9.3 The Transitions as Isoviscous States — 9.4 The Pressure Variation of Viscosity across the Transition — Chapter 10. Shear Localization, Slip and the Limiting Stress — 10.1 Introduction — 10.2 Measurements of Rate Independent Shear Stress — 10.3 Flow Visualization of Shear Bands — 10.4 Mohr-Coulomb Failure Criterion — 10.5 Change of Character of the Piezoviscous Navier-Stokes Equations — 10.6 Thermal Localization, Adiabatic Shear Bands — 10.7 Interfacial Slip — Chapter 11. The Reynolds Equation — 11.1 Background — 11.2 Reynolds Equations for Generalized Newtonian Fluids — Chapter 12. Applications to Elastohydrodynamics — 12.1 Introduction — 12.2 Film Thickness for Shear Thinning Liquids — 12.3 The Calculation of Traction from Material Properties.

Product Details

ISBN:
9780080475301
Publisher:
Elsevier Science
Subject:
Technology : Engineering - Mechanical
Author:
S. Bair, Scott
Author:
Scott S. Bair
Author:
Bair, Scott S
Subject:
Technology & Engineering : Mechanical
Subject:
Engineering - Mechanical
Subject:
Engineering - Chemical & Biochemical
Subject:
Mechanical
Subject:
Chemical & Biochemical
Subject:
Mechanical Engineering-General
Subject:
main_subject
Subject:
all_subjects
Subject:
Technology & Engineering : Chemical & Biochemical
Publication Date:
March 2007
Binding:
eBooks
Language:
English

Related Subjects

Engineering » Engineering » General Engineering
Engineering » Mechanical Engineering » General
Science and Mathematics » Chemistry » Chemical Engineering
Science and Mathematics » Materials Science » General

High-Pressure Rheology for Quantitative Elastohydrodynamics
0 stars - 0 reviews
$ In Stock
Product details pages Elsevier - English 9780080475301 Reviews:
"Synopsis" by , Computational elastohydrodynamics, a part of tribology, has existed happily enough for about fifty years without the use of accurate models for the rheology of the liquids used as lubricants. For low molecular weight liquids, such as low viscosity mineral
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.