Poetry Madness
 
 

Recently Viewed clear list


Q&A | February 27, 2014

Rene Denfeld: IMG Powell’s Q&A: Rene Denfeld



Describe your latest book. The Enchanted is a story narrated by a man on death row. The novel was inspired by my work as a death penalty... Continue »
  1. $18.19 Sale Hardcover add to wish list

    The Enchanted

    Rene Denfeld 9780062285508

spacer

This item may be
out of stock.

Click on the button below to search for this title in other formats.


Check for Availability
Add to Wishlist

Introductory Bioelectronics: For Engineers and Physical Scientists

by

Introductory Bioelectronics: For Engineers and Physical Scientists Cover

 

Synopses & Reviews

Publisher Comments:

Bioelectronics is a rich field of research involving the application of electronics engineering principles to biology, medicine, and the health sciences. With its interdisciplinary nature, bioelectronics spans state-of-the-art research at the interface between the life sciences, engineering and physical sciences. 

Introductory Bioelectronics offers a concise overview of the field and teaches the fundamentals of biochemical, biophysical, electrical, and physiological concepts relevant to bioelectronics. It is the first book to bring together these various topics, and to explain the basic theory and practical applications at an introductory level. 

The authors describe and contextualise the science by examining recent research and commercial applications. They also cover the design methods and forms of instrumentation that are required in the application of bioelectronics technology. The result is a unique book with the following key features: 

  • an interdisciplinary approach, which develops theory through practical examples and clinical applications, and delivers the necessary biological knowledge from an electronic engineer’s perspective
  • a problem section in each chapter that readers can use for self-assessment, with model answers given at the end of the book along with references to key scientific publications
  • discussions of new developments in the bioelectronics and biosensors fields, such as microfluidic devices and nanotechnology

Supplying the tools to succeed, this text is the best resource for engineering and physical sciences students in bioelectronics, biomedical engineering and micro/nano-engineering.  Not only that, it is also a resource for researchers without formal training in biology, who are entering PhD programmes or working on industrial projects in these areas.

About the Author

Professor Ronald Pethig, Bioelectronics, School of Engineering, University of Edinburgh He has PhD degrees in electrical engineering and physical chemistry, and a D.Sc degree for work in the field of biomolecular electronics. He is author of one book (Dielectric and Electronic Properties of Biological Materials, Wiley) and more than 200 scientific papers in the field of biomolecular electronics and dielectrophoresis. He has received several awards, including in 2001 being the first recipient of the Herman P Schwan Award for work in biodielectrics. He serves on the editorial boards of several scientific journals, including acting as editor-in-chief of the IET journal Nanobiotechnology.

Stewart Smith, RCUK Academic Fellow, School of Engineering, University of Edinburgh He has a PhD in microelectronics and has authored over 60 scientific papers on subjects ranging from implantable drug delivery systems to test structures for the characterisation of MEMS processes. He is based at the Scottish Microelectronics Centre in Edinburgh where he works on the development of biomedical microsystems. He is a member of the technical committee for the IEEE International Conference on Microelectronic Test Structures.

Table of Contents

About the Authors
Foreward
Preface

1. Basic Chemical and Biochemical Concepts
1.1. Chapter Overview
1.2. Energy and Chemical Reactions
1.1.1. Energy
1.1.2. Covalent Chemical Bonds
1.1.3. Chemical Concentrations
1.1.4. Nonpolar, Polar and Ionic Bonds
1.1.5. Van der Waals Attractions
1.1.6. Chemical Reactions
1.1.7. Free-Energy Change ΔG associated with Chemical Reactions
1.2. Water and Hydrogen Bonds
1.2.1. Hydrogen Bonds
1.3. Acids, Bases and pH
1.3.1. The Biological Importance of pH
1.3.2. The Henderson-Hasselbalch Equation
1.3.3. Buffers
1.4. Summary of Key Concepts (1.4 in document)
1.5. Cited References
1.6. Further Reading
1.7. Sample Problems

2. Cells and their Basic Building Blocks
2.1. Chapter Overview
2.2. Lipids and Biomembranes
2.2.1. Fatty Acids
2.3. Carbohydrates and Sugars
2.4. Amino Acids, Polypeptides and Proteins
2.4.1. Amino Acids and Peptide Bonds
2.4.2. Polypeptides and Proteins
2.5. Nucleotides, Nucleic Acids, DNA, RNA and Genes
2.5.1. DNA
2.5.2. Ribonucleic Acid (RNA)
2.5.3. Chromosomes 
2.5.4. Central Dogma of Molecular Biology (DNA makes RNA makes Protein)
2.6. Cells and Pathogenic Bioparticles
2.6.1. Prokaryotic and Eukaryotic Cells
2.6.2. The Plasma Membrane 
2.6.3. The Cell Cycle
2.6.4. Blood Cells
2.6.5. Bacteria
2.6.6. Plant, Fungal and Protozoal Cells
2.6.7. Viruses
2.6.8. Prions
2.6.9. Cell Culture
2.6.10. Tissue Engineering
2.6.11. Cell-Cell Communication
2.7. Summary of Key Concepts
2.8. Cited References
2.9. Further Reading

3. Basic Biophysical Concepts and Methods
3.1. Chapter Overview
3.2. Electrostatic Interactions
3.2.1. Coulomb’s Law 
3.2.2. Ions in Water 
3.2.3. The Formation of an Ionic Double Layer
3.2.4. Ion-Dipole and Dipole-Dipole Interactions 
3.2.5. Ions in a Membrane or Protein 
3.3. Hydrophobic and Hydration forces
3.3.1. Hydrophobic Forces
3.3.2. Hydration Forces
3.4. Osmolarity, Tonicity and Osmotic Pressure
3.4.1. Osmoles
3.4.2. Calculating Osmolarity for Complex Solutions
3.4.3. Osmolarity versus Tonicity
3.5. Transport of Ions and Molecules across Cell Membranes
3.5.1. Diffusion
3.5.2. Osmosis
3.5.3. Facilitated Diffusion
3.5.4. Active Transport
3.6. Electrochemical Gradients and Ion Distributions across Membranes
3.6.1. Donnan Equilibrium
3.7. Osmotic Properties of Cells
3.8. Probing the Electrical Properties of Cells
3.8.1. Passive Electrical Response
3.8.2. Active Electrical Response 
3.8.3. Membrane Resistance 
3.8.4. Membrane Capacitance 
3.8.5. Extent of Ion Transfer associated with the Membrane Resting potential 
3.9. Membrane Equilibrium Potentials
3.10. Nernst Potential and Nernst Equation
3.11. The Equilibrium (Resting) Membrane Potential
3.12. Membrane Action Potential
3.12.1. Nerve (axon) Membrane
3.12.2. Heart Muscle Cell Membrane
3.13. Channel Conductance
3.14. The Voltage Clamp
3.15. Patch-Clamp Recording
3.15.1. Application to Drug Discovery 
3.16. Electrokinetic Effects
3.16.1. Electrophoresis
3.16.2. Electro-osmosis
3.16.3. Capillary Electrophoresis
3.16.4. Dielectrophoresis (DEP)
3.16.5. Electrowetting on Dielectric (EWOD)
3.17. Cited References

4. Spectroscopic Techniques
4.1. Chapter Overview
4.2. Introduction
4.2.1. Electronic and Molecular Energy Transitions
4.2.2. Luminescence
4.2.3. Chemiluminescence
4.2.4. Fluorescence and Phosphorescence
4.3. Classes of Spectroscopy
4.3.1. Electronic Spectroscopy
4.3.2. Vibrational Spectroscopy
4.3.3. Rotational Spectroscopy
4.3.4. Raman Spectroscopy
4.3.5. Total Internal Reflection Fluorescence (TIRF)
4.3.6. Nuclear Magnetic Resonance (NMR) Spectroscopy
4.3.7. Electron Spin Resonance (ESR) Spectroscopy
4.3.8. Surface Plasmon Resonance (SPR)
4.3.9. Förster Resonance Energy Transfer (FRET)
4.4. The Beer-Lambert Law
4.4.1. Limitations of the Beer-Lambert Law
4.5. Impedance Spectroscopy
4.6. Cited References
4.7. Further Reading
4.8. Problems for Self Study

5. Electrochemical Principles and Electrode Reactions
5.1. Chapter Overview
5.2. Introduction
5.3. Electrochemical Cells and Electrode Reactions
5.3.1. Anodes and Cathodes
5.3.2. Electrode Reactions
5.3.3. Electrode Potential
5.3.4. Standard Reduction Potential and the Standard Hydrogen Electrode
5.3.5. The Relative Reactivities of Metal Electrodes
5.3.6. The Nernst Equation
5.4. Electrical Control of Electron Transfer Reactions
5.4.1. Cyclic Voltammetry
5.4.2. Amperometry
5.4.3. The Ideal Polarized Electrode (5.4.2 in document)
5.4.4. Three-Electrode System (5.4.3 in document)
5.5. Reference Electrodes
5.5.1. The Silver-Silver Chloride Reference Electrode
5.5.2. The Saturated-Calomel Electrode
5.5.3. Liquid Junction Potentials
5.6. Electrochemical Impedance Spectroscopy (EIS)
5.7. Cited References
5.8. Further Reading
5.9. Problems for Self Study
6. Biosensors
6.1. Chapter Overview
6.2. Introduction
6.3. Immobilization of the Biosensing Agent
6.3.1. Physical Methods 
6.3.2. Chemical Methods 
6.4. Biosensor Parameters
6.4.1. Format
6.4.2. Transfer Function
6.4.3. Sensitivity
6.4.4. Selectivity
6.4.5. Noise
6.4.6. Drift
6.4.7. Precision and Accuracy
6.4.8. Detection Limit and Decision Limit
6.4.9. Dynamic Range
6.4.10. Response Time
6.4.11. Resolution
6.4.12. Bandwidth
6.4.13. Hysteresis
6.4.14. Effects of pH and Temperature
6.4.15. Testing of Anti-interference
6.5. Amperometric Biosensors
6.5.1. Mediated Amperometric Biosensors
6.6. Potentiometric Biosensors
6.6.1. Ion Selective Electrodes (ISEs)
6.7. Conductometric and Impedimetric Biosensors
6.8. Sensors based on Antibody-Antigen interaction
6.9. Photometric Biosensors
6.10. Biomimetic Sensors
6.11. Glucose Sensors
6.12. Biocompatibility of Implantable Sensors
6.12.1. Progression of Wound Healing
6.12.2. Impact of Wound Healing on Implanted Sensors
6.12.3. Controlling the Tissue Response to Sensor Implantation
6.12.4. Regulations for and Testing of Implantable Medical Devices
6.13. Cited References
6.14. Further Reading

7. Basic Sensor Instrumentation and Electrochemical Sensor Interfaces
7.1. Chapter Overview
7.2. Transducer Basics
7.2.1. Transducers
7.2.2. Sensors
7.2.3. Actuators
7.2.4. Transduction in Biosensors
7.2.5. Smart Sensors
7.2.6. Passive vs. Active Sensors
7.3. Sensor Amplification
7.3.1. Equivalent Circuits
7.4. The Operational Amplifier
7.4.1. Op-Amp Basics
7.4.2. Non-Inverting Op-Amp Circuit
7.4.3. Buffer Amplifier Circuit
7.4.4. Inverting Op-Amp Circuit
7.4.5. Differential Amplifier Circuit
7.4.6. Current Follower Amplifier
7.5. Limitations of Operational Amplifiers
7.5.1. Resistor Values
7.5.2. Input Offset Voltage
7.5.3. Input Bias Current
7.5.4. Power Supply
7.5.5. Op-Amp Noise
7.5.6. Frequency Response
7.6. Instrumentation for Electrochemical Sensors
7.6.1. The Electrochemical Cell (Revision)
7.6.2. Equivalent Circuit of an Electrochemical Cell
7.6.3. Potentiostat Circuits
7.6.4. Instrumentation Amplifier
7.6.5. Potentiostat Performance and Design Considerations
7.6.6. Microelectrodes
7.6.7. Low Current Measurement
7.7. Impedance Based Biosensors
7.7.1.  ConductometricBiosensors
7.7.2. Electrochemical Impedance Spectroscopy
7.7.3. Complex Impedance Plane Plots and Equivalent Circuits
7.7.4. Biosensing Applications of EIS
7.8. FET Based Biosensors
7.8.1. MOSFET Revision
7.8.2. The Ion Sensitive Field Effect Transistor
7.8.3. ISFET Fabrication
7.8.4. ISFET Instrumentation
7.8.5. The REFET
7.8.6. ISFET Problems
7.8.7. Other FET Based Sensors
7.9. Cited References
7.10. Further Reading
7.11. Problems for Self Study

8. Instrumentation for Other Sensor Technologies
8.1. Chapter Overview
8.2. Temperature Sensors and Instrumentation
8.2.1. Temperature Calibration
8.2.2. Resistance Temperature Detectors
8.2.3. p-n Junction Diode as a Temperature Sensor
8.3. Mechanical Sensor Interfaces
8.3.1. Piezoresistive Effect
8.3.2. Applications of Piezoresistive Sensing
8.3.3. Piezoelectric Effect
8.3.4. Quartz Crystal Microbalance
8.3.5. Surface Acoustic Wave Devices
8.3.6. Capacitive Sensors
8.3.7. Capacitance Measurement
8.3.8. Capacitive Bridge
8.3.9. Switched Capacitor Circuits
8.4. Optical Biosensor Technology
8.4.1. Fluorescence
8.4.2. Optical Fibre Sensors
8.4.3. Optical Detectors
8.4.4. Case Study - Label Free DNA Detection with an Optical Biosensor
8.5. Transducer Technology for Neuroscience and Medicine
8.5.1. The Structure of a Neuron
8.5.2. Measuring and Actuating Neurons
8.5.3. Extra-Cellular Measurements of Neurons
8.6. Cited References
8.7. Further Reading
8.8. Problems for Self Study

9. Microfluidics: Basic Physics and Concepts
9.1. Chapter Overview
9.2. Liquids and Gases
9.2.1. Gases
9.2.2. Liquids
9.3. Fluids treated as a Continuum
9.3.1. Density
9.3.2. Temperature
9.3.3. Pressure
9.3.4. Maxwell Distribution of Molecular Speeds
9.3.5. Viscosity
9.4. Basic Fluidics
9.4.1. Static Fluid Pressure 
9.4.2. Pascal’s Law 
9.4.3. Laplace’s Law
9.5. Fluid Dynamics
9.5.1. Conservation of Mass Principle (Continuity Equation) 
9.5.2. Bernoulli’s Equation (Conservation of Energy)
9.5.3. Poiseuille’s Law (flow resistance)
9.5.4. Laminar Flow (10.5.4 in Document)
9.5.5. Application of Kirchhoff’s Laws (Electrical analogue of fluid flow)
9.6. Navier-Stokes Equations
9.6.1. Conservation of Mass Equation
9.6.2. Conservation of Momentum Equation (Navier-Stokes Equation)
9.6.3. Conservation of Energy Equation
9.7. Continuum versus Molecular Model
9.7.1. Solving Fluid Conservation Equations 
9.7.2. Molecular simulations
9.7.3. Meso-scale Physics
9.8. Diffusion
9.9. Surface Tension
9.9.1. Surfactants
9.9.2. Soap Bubble
9.9.3. Contact Wetting Angle
9.9.4. Capillary Action
9.9.5. Practical Aspects of Surface Tension for Lab-on-Chip devices
9.10. Cited References (9.9 in document)
9.11. Further Reading (9.10 in document)
9.12. Problems for Self Study (9.11 in document)

10. Microfluidics: Dimensional Analysis and Scaling
10.1. Chapter Overview
10.2. Dimensional Analysis
10.2.1. Base and Derived Physical Quantities
10.2.2. Buckingham’s π-Theorem
10.3. Dimensionless Parameters
10.3.1. Hydraulic Diameter
10.3.2. The Knudsen Number
10.3.3. The Peclet Number:  Transport by Advection or Diffusion?
10.3.4. The Reynolds Number:  Laminar or Turbulent Flow?
10.3.5. Reynolds Number as a Ratio of Time Scales
10.3.6. The Bond Number:  How Critical is Surface Tension?
10.3.7. Capillary Number: Relative importance of Viscous and Surface Tension Forces
10.3.8. Weber Number: relative effects of Inertia and Surface Tension
10.3.9. Prandtl Number: Relative Thickness of Thermal and Velocity Boundary Layers
10.4. Applying Non-Dimensional Parameters to Practical Flow Problems
10.4.1. Channel filled with Water Vapour 
10.4.2. Channel filled with a Dilute Electrolyte at 293 K
10.5. Characteristic Time Scales
10.5.1. Convective Time Scale
10.5.2. Diffusion Time Scale
10.5.3. Capillary Time Scale
10.5.4. Rayleigh Time Scale
10.6. Applying Micro- and Nano-Physics to the Design of Microdevices
10.7. Cited References
10.8. Problems for Self Study

Appendices

Appendix 1:  SI Prefixes
 Appendix 2:  Values of Fundamental Physical Constants
 Appendix 3: Model Answers for Self Study Problems

Product Details

ISBN:
9781118443286
Subtitle:
For Engineers and Physical Scientists
Publisher:
Wiley
Author:
Pethig, Ronald R.
Author:
Smith, Stewart
Subject:
Bioelectronics
Subject:
Science : Biotechnology
Subject:
Biotechnology
Subject:
Bioinstrumentation & Biosensors
Subject:
Science : Life Sciences - Biochemistry
Copyright:
Publication Date:
20120822
Binding:
Electronic book text in proprietary or open standard format
Language:
English
Pages:
464
Dimensions:
250 x 150 x 15 mm 24 oz

Related Subjects

Science and Mathematics » Biology » General
Science and Mathematics » Chemistry » Biochemistry

Introductory Bioelectronics: For Engineers and Physical Scientists
0 stars - 0 reviews
$ In Stock
Product details 464 pages Wiley - English 9781118443286 Reviews:
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.