Poetry Madness
 
 

Recently Viewed clear list


Original Essays | April 11, 2014

Paul Laudiero: IMG Shit Rough Draft



I was sitting in a British and Irish romantic drama class my last semester in college when the idea for Shit Rough Drafts hit me. I was working... Continue »
  1. $9.07 Sale Trade Paper add to wish list

spacer
Qualifying orders ship free.
$130.25
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
25 Remote Warehouse General- General

Applied Partial Differential Equatio 2ND Edition

by

Applied Partial Differential Equatio 2ND Edition Cover

 

Synopses & Reviews

Publisher Comments:

  This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard models of mathematical physics (e.g., the heat equation, the wave equation, and Laplace's equation) and methods for solving those equations on unbounded and bounded domains (transform methods and eigenfunction expansions). Prerequisites include multivariable calculus and elementary differential equations. The text differs from other texts in that it is a brief treatment; yet it provides coverage of the main topics usually studied in the standard course as well as an introduction to using computer algebra packages to solve and understand partial differential equations. The many exercises help students sharpen their computational skills by encouraging them to think about concepts and derivations. The student who reads this book carefully and solves most of the problems will have a sound knowledge base for a second-year partial differential equations course where careful proofs are constructed or for upper division courses in science and engineering where detailed applications of partial differential equations are introduced. To give this text an even wider appeal, the second edition has been updated with a new chapter on partial differential equation models in biology, and with various examples from the life sciences that have been added throughout the text. There are more exercises, as well as solutions and hints to some of the problems at the end of the book.

Synopsis:

This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of the exercises will have a sound knowledge base for upper division mathematics, science, and engineering courses where detailed models and applications are introduced. J. David Logan is Professor of Mathematics at University of Nebraska, Lincoln. He is also the author of numerous books, including Transport Modeling in Hydrogeochemical Systems (Springer 2001).

Synopsis:

This text is written for the standard, one-semester, undergraduate course in elementary partial differential equations. The topics include derivations of some of the standard equations of mathematical physics (including the heat equation, the wave equation, and Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions, or separation of variables, and methods based on Fourier and Laplace transforms.

Table of Contents

* The Physical Origins of Partial Differential Equations * Partial Differential Equations on Unbounded Domains * Orthogonal Expansions * Partial Differential Equations on Bounded Domains * PDE Models in Biology * Appendix: Ordinary Differential Equations * Table of Laplace Transforms * References * Index

Product Details

ISBN:
9780387209357
Author:
Logan, J David
Publisher:
Springer
Author:
Logan, J. David
Subject:
Differential Equations
Subject:
Differential equations, partial
Subject:
Differential Equations - Partial Differential Equations
Subject:
Life Sciences - Ecology
Subject:
Mathematical Physics
Subject:
Applied
Subject:
PARTIAL DIFFERENTIAL EQUATIONS
Subject:
mathematical methods in physics
Subject:
Community & Population Ecology
Subject:
General-General
Copyright:
Edition Number:
2
Edition Description:
2nd ed. 2004
Series:
Undergraduate Texts in Mathematics
Publication Date:
May 2004
Binding:
HARDCOVER
Language:
English
Illustrations:
Y
Pages:
224
Dimensions:
235 x 155 mm 440 gr

Related Subjects


Reference » Science Reference » Technology
Science and Mathematics » Mathematics » Differential Equations
Science and Mathematics » Physics » Astrophysics

Applied Partial Differential Equatio 2ND Edition New Hardcover
0 stars - 0 reviews
$130.25 In Stock
Product details 224 pages Springer - English 9780387209357 Reviews:
"Synopsis" by , This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of the exercises will have a sound knowledge base for upper division mathematics, science, and engineering courses where detailed models and applications are introduced. J. David Logan is Professor of Mathematics at University of Nebraska, Lincoln. He is also the author of numerous books, including Transport Modeling in Hydrogeochemical Systems (Springer 2001).
"Synopsis" by , This text is written for the standard, one-semester, undergraduate course in elementary partial differential equations. The topics include derivations of some of the standard equations of mathematical physics (including the heat equation, the wave equation, and Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions, or separation of variables, and methods based on Fourier and Laplace transforms.
spacer
spacer
  • back to top
Follow us on...




Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.