 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$106.25
New Trade Paper
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
Other titles in the Pure and Applied Mathematics: A WileyInterscience Series of Texts, Monographs and Tracts series:
Pure and Applied Mathematics: A WileyInterscience Series of #96: Mathematical Methods in Biologyby J. David Logan
Synopses & ReviewsPublisher Comments:A oneofakind guide to using deterministic and probabilistic methods for solving problems in the biological sciences
Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book's algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problemsolving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively classtested to ensure an easytofollow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upperundergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics. Book News Annotation:Mathematicians Logan (U. of NebraskaLincoln) and Wolensensky (Doane College) offer a textbook for students in mathematics or biology who have studied at least two semesters of calculus and can reason quantitatively. There are a spate of new textbooks on mathematical biology, they admit, argue that theirs stands out because it covers both deterministic and probabilistic models. The mathematical and reasoning sophistication increases as the chapters proceed from a long introduction and review of biological modeling, through calculus, differential equations, dimensionless variables, descriptive statistics, standard discrete and continuous models using difference and differential equations, matrix algebra, probability, statistics, and stochastic processes. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)
Synopsis:The last several years has witnessed a revolution in the connections between mathematics and biology, and this book differs from most others on the topic in that it covers both deterministic and probabilistic models. The first chapter is a long introduction and review of ideas about biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The next three chapters examine standard discrete and continuous models using difference and differential equations, and matrix algebra (there is a long appendix in Chapter 3 on matrices). The final three chapters cover probability, statistics, and stochastic processes, including bootstrap methods and stochastic differential equations. The book focuses mostly in one area of the life sciences, namely, theoretical ecology. Ecology has become extremely quantitative, and the mathematical techniques used in ecology are applicable to most other areas in the life sciences. Ecology provides an especially accessible context for study by mathematics majors. Moreover, the authors chose ecology for the book's motivations and examples in light of their own interests and research in the area. Additional topical coverage includes an introduction to ecological modeling, population dynamics for single species, structure and interacting populations, interactions in continuous time, concepts of probability, statistical inference, and stochastic processes.
About the AuthorJ. David Logan, PhD, is Willa Cather Professor of Mathematics at the University of Nebraska–Lincoln. He has written more than eighty research articles in his areas of research interest, which include mathematical physics, combustion and detonation, hydrogeology, and mathematical biology. Dr. Logan is the author of Applied Mathematics, Third Edition and An Introduction to Nonlinear Partial Differential Equations, Second Edition, both published by Wiley. William R. Wolesensky, PhD, is Associate Professor in the Department of Mathematics at Doane College. Dr. Wolesensky has written numerous journal articles on the use of mathematical modeling techniques in scientific research.
Table of ContentsPreface.
1. Introduction To Ecological Modeling. 1.1 Mathematical Models. 1.2 Rates of Change. 1.3 Balance Laws. 1.4 Temperature in the Environment. 1.5 Dimensionless Variables. 1.6 Descriptive Statistics. 1.7 Regression and Curve Fitting. 1.8 Reference Notes. 2. Population Dynamics for Single Species. 2.1 Laws of Population Dynamics. 2.2 Continuous Time Models. 2.3 Qualitative Analysis of Population Models. 2.4 Dynamics of Predation. 2.5 Discrete Time Models. 2.6 Equilibria, Stability, and Chaos. 2.7 Reference Notes. 3. Structure and Interacting Populations. 3.1 StructureJuveniles and Adults. 3.2 Structured Linear Models. 3.3 Nonlinear Interactions. 3.4 AppendixMatrices. 3.5 Reference Notes. 4. Interactions in Continuous Time. 4.1 Interacting Populations. 4.2 Phase Plane Analysis. 4.3 Linear Systems. 4.4 Nonlinear Systems. 4.5 Bifurcation. 4.6 Reference Notes. 5. Concepts of Probability. 5.1 Introductory Examples and Definitions. 5.2 The HardyWeinberg Law. 5.3 Continuous Random Variables. 5.4 Discrete Random Variables. 5.5 Joint Probability Distributions. 5.6 Covariance and Correlation. 5.7 Reference Notes. 6. Statistical Inference. 6.1 Introduction. 6.2 Interval Analysis. 6.3 Estimating Proportions. 6.4 The ChiSquared Test. 6.5 Hypothesis Testing. 6.6 Bootstrap Methods. 6.7 Reference Notes. 7. Stochastic Processes. 7.1 Introduction. 7.2 Randomizing Discrete Dynamics. 7.3 Random Walk. 7.4 Birth Processes. 7.5 Stochastic Differential Equations. 7.6 SDEs from Markov Models. 7.7 Solving SDEs. 7.8 The FokkerPlanck Equation. 7.9 Reference Notes. A. Hints and Solutions to Exercises What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Related Subjects
Health and SelfHelp » Health and Medicine » Medical Specialties


