 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$217.75
New Hardcover
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
Other titles in the Pure and Applied Mathematics: A WileyInterscience Series of Texts, Monographs and Tracts series:
The Hilbert Transform of Schwartz Distributions and Applications (Pure and Applied Mathematics: A WileyInterscience Series of Texts, Monographs and Tracts)by J. N. Pandey
Synopses & ReviewsPublisher Comments:This book provides a modern and uptodate treatment of the Hilbert transform of distributions and the space of periodic distributions. Taking a simple and effective approach to a complex subject, this volume is a firstrate textbook at the graduate level as well as an extremely useful reference for mathematicians, applied scientists, and engineers.
The author, a leading authority in the field, shares with the reader many new results from his exhaustive research on the Hilbert transform of Schwartz distributions. He describes in detail how to use the Hilbert transform to solve theoretical and physical problems in a wide range of disciplines; these include aerofoil problems, dispersion relations, highenergy physics, potential theory problems, and others. Innovative at every step, J. N. Pandey provides a new definition for the Hilbert transform of periodic functions, which is especially useful for those working in the area of signal processing for computational purposes. This definition could also form the basis for a unified theory of the Hilbert transform of periodic, as well as nonperiodic, functions. The Hilbert transform and the approximate Hilbert transform of periodic functions are worked out in detail for the first time in book form and can be used to solve Laplace's equation with periodic boundary conditions. Among the many theoretical results proved in this book is a PaleyWiener type theorem giving the characterization of functions and generalized functions whose Fourier transforms are supported in certain orthants of Rn. Placing a strong emphasis on easy application of theory and techniques, the book generalizes the Hilbert problem in higher dimensions and solves it in function spaces as well as in generalized function spaces. It simplifies the onedimensional transform of distributions; provides solutions to the distributional Hilbert problems and singular integral equations; and covers the intrinsic definition of the testing function spaces and its topology. The book includes exercises and review material for all major topics, and incorporates classical and distributional problems into the main text. Thorough and accessible, it explores new ways to use this important integral transform, and reinforces its value in both mathematical research and applied science. The Hilbert transform made accessible with many new formulas and definitions Written by today's foremost expert on the Hilbert transform of generalized functions, this combined text and reference covers the Hilbert transform of distributions and the space of periodic distributions. The author provides a consistently accessible treatment of this advancedlevel subject and teaches techniques that can be easily applied to theoretical and physical problems encountered by mathematicians, applied scientists, and graduate students in mathematics and engineering. Introducing many new inversion formulas that have been developed and applied by the author and his research associates, the book:
Book News Annotation:A textbook for graduate courses and a reference for mathematicians, applied scientists, and engineers. Provides a current treatment of the Hilbert transform of distributions and the space of periodic distributions, drawing on Pandey's (mathematics, Carlton U., Ottawa) own research to explain how to use the transform to solve theoretical and physical problems in a wide range of disciplines.
Annotation c. Book News, Inc., Portland, OR (booknews.com) Description:Includes bibliographical references (p. 249253) and indexes.
About the AuthorJ. N. PANDEY is Professor of Mathematics at Carleton University in Ottawa with over thirty years' experience in the field. He has been involved in many research projects, supervised doctoral candidates, and has published and reviewed numerous papers in North American and European professional journals.
Table of ContentsThe RiemannHilbert Problem.
The Hilbert Transform of Distributions in D'Lp, 1 p infinity . The Hilbert Transform of Schwartz Distributions. nDimensional Hilbert Transform. Further Applications of the Hilbert Transform, the Hilbert Problem A Distributional Approach. Periodic Distributions, Their Hilbert Transform and Applications. Bibliography. Indexes. What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Other books you might likeRelated SubjectsScience and Mathematics » Mathematics » Analysis General Science and Mathematics » Mathematics » Calculus » General Science and Mathematics » Mathematics » Functional Analysis Science and Mathematics » Mathematics » Geometry » Geometry and Trigonometry 

