 BROWSE
 USED
 STAFF PICKS
 GIFTS + GIFT CARDS
 SELL BOOKS
 BLOG
 EVENTS
 FIND A STORE
 800.878.7323

$67.25
New Trade Paper
Ships in 1 to 3 days
available for shipping or prepaid pickup only
Available for Instore Pickup
in 7 to 12 days
Other titles in the London Mathematical Society Lecture Notes series:
Invariant Potential Theory in the Unit Ball of Cn (London Mathematical Society Lecture Note)by Manfred Stoll
Synopses & ReviewsPublisher Comments:This monograph covers PoissonSzegö integrals on the ball, the Green's function for ^D*D and the Riesz decomposition theorem for invariant subharmonic functions. The extension to the ball of the classical Fatou theorem on nontangible limits of Poisson integrals, and Littlewood's theorem on the existence of radial limits of subharmonic functions are covered in detail. It also contains recent results on admissible and tangential boundary limits of Green potentials, and Lp inequalities for the invariant gradient of Greens potentials. Applications of some of the results to Hp spaces, and weighted Bergman and Dirichlet spaces of invariant harmonic functions are included.
Synopsis:Topics covered include PoissonSzegö integrals on the ball, the Green's function for ^D*D and the Riesz decomposition theorem for invariant subharmonic functions in this introduction and survey of recent results in potential theory with respect to the LaplaceBeltrami operator ^D*D in several complex variables, with special emphasis on the unit ball in Cn.
Synopsis:The results in potential theory with respect to the LaplaceBeltrami operator D in several complex variables, with special emphasis on the unit ball in Cn.
Description:Includes bibliographical references (p. [164]169) and index.
Table of Contents1. Notation and preliminary results; 2. The Bergman kernel; 3. The LaplaceBeltrami operator; 4. Invariant harmonic and subharmonic functions; 5. PoissonSzegö integrals; 6. The Riesz decomposition theorem; 7. Admissible boundary limits of Poisson integrals; 8. Radial and admissible boundary limits of potentials; 9. Gradient estimates and Riesz potentials; 10. Spaces of invariant harmonic functions; References.
What Our Readers Are SayingBe the first to add a comment for a chance to win!Product Details
Related Subjects
Business » Human Resource Management


