25 Women to Read Before You Die
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Visit our stores


    Recently Viewed clear list


    Interviews | August 31, 2015

    Shawn Donley: IMG Bill Clegg: The Powells.com Interview



    Bill CleggIn January of this year, eight months before its release date, the buzz was already starting to build for Bill Clegg's Did You Ever Have a Family.... Continue »
    1. $18.20 Sale Hardcover add to wish list

      Did You Ever Have a Family

      Bill Clegg 9781476798172

    spacer
Qualifying orders ship free.
$299.00
New Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
1 Remote Warehouse Mathematics- Applied

More copies of this ISBN

Other titles in the Understanding Complex Systems series:

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals (Understanding Complex Systems)

by

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals (Understanding Complex Systems) Cover

 

Synopses & Reviews

Publisher Comments:

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change.

The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals.

The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.

Synopsis:

This book provides serious readers with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index.

Synopsis:

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.

Table of Contents

Basics of Nonlinear and Chaotic Dynamics.- Phase Transitions and Synergetics.- Geometry and Topology Change in Complex Systems.- Nonlinear Dynamics of Path Integrals.- Complex Nonlinearity: Combining It All Together.

Product Details

ISBN:
9783540793564
Author:
Ivancevic, Vladimir G.
Publisher:
Springer
Author:
Ivancevic, Tijana T.
Location:
Berlin, Heidelberg
Subject:
Physics
Subject:
Differential Equations
Subject:
Applied
Subject:
Chaos
Subject:
Complex Nonlinearity
Subject:
Complexity
Subject:
Nonlinearity
Subject:
Path integrals
Subject:
Phase transitions
Subject:
Topology Change
Subject:
Statistical Physics, Dynamical Systems and Complexity
Subject:
Vibration, Dynamical Systems, Control
Subject:
Dynamical Systems and Ergodic Theory
Subject:
Appl.Mathematics/Computational Methods of Engineering
Subject:
Physics-General
Subject:
Language, literature and biography
Subject:
Physics and Astronomy
Subject:
Vibration
Subject:
Differentiable dynamical systems
Subject:
Engineering mathematics
Copyright:
Edition Description:
Book
Series:
Understanding Complex Systems
Publication Date:
20080831
Binding:
HARDCOVER
Language:
English
Illustrations:
Y
Pages:
859
Dimensions:
235 x 155 mm 1 gr

Related Subjects


Science and Mathematics » Mathematics » Applied
Science and Mathematics » Mathematics » Differential Equations
Science and Mathematics » Physics » General

Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals (Understanding Complex Systems) New Hardcover
0 stars - 0 reviews
$299.00 In Stock
Product details 859 pages Springer - English 9783540793564 Reviews:
"Synopsis" by , This book provides serious readers with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index.
"Synopsis" by , Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos-control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity - chaos - corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman's sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.
spacer
spacer
  • back to top

FOLLOW US ON...

       
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.