We Need Diverse Ya Sale
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Visit our stores


    Recently Viewed clear list


    Lists | June 22, 2015

    Stephen Jarvis: IMG Robert Seymour — 13 Pictures



    1. Self-Portrait. My new novel, Death and Mr. Pickwick, tells the story of the origins of Charles Dickens's first novel, The Pickwick Papers. Its... Continue »
    1. $21.00 Sale Hardcover add to wish list

      Death and Mr. Pickwick

      Stephen Jarvis 9780374139667

    spacer
Qualifying orders ship free.
$200.95
New Trade Paper
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
25 Remote Warehouse Mathematics- Introduction

This title in other editions

Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization)

by

Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization) Cover

 

Synopses & Reviews

Publisher Comments:

This book covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topology. Each chapter fully details and provides a tutorial introduction to important concepts and results. The focus is on methods which are both well founded mathematically and efficient in practice. Coverage includes references to open source software and discussion of potential applications of the presented techniques.

Table of Contents

1 Arrangements Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud, Ron Wein, Nicola Wolpert 1.1 Introduction 1.2 Chronicles 1.3 Exact Construction of Planar Arrangements 1.3.1Construction by Sweeping 1.3.2 Incremental Construction 1.4  Software for Planar Arrangements 1.4.1 The Cgal Arrangements Package 1.4.2 Arrangements Traits 1.4.3 Traits Classes from Exacus 1.4.4An Emerging Cgal Curved Kernel 1.4.5 How To Speed UpYour Arrangement Computation in Cgal 1.5 Exact Construction in 3-Space 1.5.1 Sweeping Arrangements of Surfaces 1.5.2Arrangements of Quadricsin 3D 1.6 Controlled Perturbation: Fixed-Precision Approximation of Arrangements 1.7 Applications 1.7.1 Boolean Operations for Conics 1.7.2 Motion Planning for Discs 1.7.3 Lower Envelopes for Path Verification in Multi-Axis NC-Machining 1.7.4 Maximal Axis-Symmetric Polygon Containedin a Simple Polygon 1.7.5 Molecular Surfaces 1.7.6 Additional Applications 1.8 Further Reading and Open problems 2 Curved Voronoi Diagrams Jean-Daniel Boissonnat, Camille Wormser, Mariette Yvinec 2.1 Introduction 2.2 Lower Envelopes and Minimization Diagrams 2.3 Affine Voronoi Diagrams 2.3.1 Euclidean Voronoi Diagrams of Points 2.3.2 Delaunay Triangulation 2.3.3 PowerDiagrams 2.4 Voronoi Diagrams with Algebraic Bisectors 2.4.1 Möbius Diagrams 2.4.2 Anisotropic Diagrams 2.4.3Apollonius Diagrams 2.5 Linearization 2.5.1Abstract Diagrams 2.5.2 Inverse Problem 2.6 Incremental Voronoi Algorithms 2.6.1 Planar Euclidean diagrams 2.6.2 Incremental Construction 2.6.3 The Voronoi Hierarchy 2.7 Medial Axis 2.7.1 Medial Axis and Lower Envelope 2.7.2 Approximation of the Medial Axis 2.8 Voronoi Diagrams in Cgal 2.9 Applications 3 Algebraic Issues in Computational Geometry Bernard Mourrain, Sylvain Pion, Susanne Schmitt, Jean-Pierre Técourt, Elias Tsigaridas, Nicola Wolpert 3.1 Introduction 3.2 Computers and Numbers 3.2.1 Machine Floating Point Numbers: the IEEE 754 norm........119 3.2.2 Interval Arithmetic ......................................120 3.2.3 Filters..................................................121 3.3 Effective Real Numbers .......................................123 3.3.1 Algebraic Numbers ......................................124 3.3.2 Isolating Interval Representation of Real Algebraic Numbers 3.3.3 Symbolic Representation of Real Algebraic Numbers .........125 3.4 Computing with Algebraic Numbers ............................126 3.4.1 Resultant...............................................126 3.4.2 Isolation................................................131 3.4.3Algebraic Numbers of Small Degree ........................136 3.4.4 Comparison.............................................138 3.5 Multivariate Problems ........................................140 3.6  Topology of Planar Implicit Curves.............................142 3.6.1 The Algorithm from a Geometric Point of View .............143 3.6.2 Algebraic Ingredients.....................................144 3.6.3 How to Avoid Genericity Conditions .......................145 3.7  Topology of 3d Implicit Curves.................................146 3.7.1 Critical Points and Generic Position........................147 3.7.2 The Projected Curves ....................................148 3.7.3 Lifting a Point of the Projected Curve......................149 3.7.4 Computing Points of the Curve above CriticalValues.........151 3.7.5 Connecting the Branches .................................152 3.7.6 The Algorithm ..........................................153 3.8 Software ....................................................154 4 Differential Geometry on Discrete Surfaces David Cohen-Steiner, Jean-Marie Morvan  4.1 Geometric Properties of Subsets of Points .......................157 4.2  Length and Curvature of a Curve...............................158 4.2.1 The Length of Curves ....................................158 4.2.2 The Curvature of Curves .................................159 4.3   The Area of a Surface.........................................161 4.3.1 Definition of the Area ....................................161 4.3.2 An Approximation Theorem ..............................162 4.4 CurvaturesofSurfaces ........................................164 4.4.1 The Smooth Case........................................164 4.4.2 Pointwise Approximation of the Gaussian Curvature .........165 4.4.3 From Pointwise to Local..................................167 4.4.4 Anisotropic Curvature Measures...........................174 4.4.5 o-samples on a Surface....................................178 5 Meshing of Surfaces Jean-Daniel Boissonnat, David Cohen-Steiner, Bernard Mourrain, Günter Rote, Gert Vegter 5.1 Introduction: What is Meshing?................................181 5.1.1 Overview ...............................................187 5.2 Marching Cubesand Cube-Based Algorithms ....................188 5.2.1 Criteria for a Correct Mesh Inside a Cube ..................190 5.2.2 Interval Arithmetic for Estimating the Range of a Function ...190 5.2.3 Global Parameterizability: Snyder's Algorithm...............191 5.2.4 Small Normal Variation ..................................196 5.3 DelaunayRefinementAlgorithms...............................201 5.3.1 Using the Local Feature Size ..............................202 5.3.2 Using Critical Points.....................................209 5.4 A Sweep Algorithm...........................................213 5.4.1Meshing a Curve ........................................215 5.4.2Meshing a Surface .......................................216 5.5 Obtaining a Correct Mesh by Morse Theory .....................223 5.5.1 Sweeping through Parameter Space ........................223 5.5.2 Piecewise-Linear Interpolation of the Defining Function 5.6 Research Problems............................................227 6 Delaunay Triangulation Based Surface Reconstruction Frédéric Cazals, Joachim Giesen 6.1 Introduction.................................................231 6.1.1 Surface Reconstruction ...................................231 6.1.2Applications ............................................231 6.1.3 Reconstruction Using the Delaunay Triangulation............232 6.1.4 A Classification of Delaunay Based Surface Reconstruction Methods 6.1.5 Organization of the Chapter ..............................234 6.2 Prerequisites.................................................234 6.2.1Delaunay Triangulations, Voronoi Diagrams and Related Concepts 6.2.2 Medial Axis and Derived Concepts.........................244 6.2.3 Topological and Geometric Equivalences....................249 6.2.4 Exercises ...............................................252 6.3 Overview of the Algorithms....................................253 6.3.1Tangent Plane Based Methods ............................253 6.3.2Restricted Delaunay Based Methods .......................257 6.3.3Inside/Outside Labeling.................................261 6.3.4Empty Balls Methods ....................................268 6.4 Evaluating Surface Reconstruction Algorithms 6.5 Software ....................................................272 6.6 Research Problems ...........................................273 7 Computational Topology: An Introduction Günter Rote, Gert Vegter 7.1 Introduction.................................................277 7.2 Simplicialcomplexes..........................................278 7.3 Simplicial homology ..........................................282 7.4 MorseTheory................................................295 7.4.1 Smooth functions and manifolds ...........................295 7.4.2 Basic Results from Morse Theory..........................300 7.5 Exercises....................................................310 7.6 Appendix:SomeBasicResultsfromLinearAlgebra...............312 8 Appendix -Generic Programming and The Cgal Library Efi Fogel, Monique Teillaud .......................................315 8.1 The Cgal OpenSourceProject ...............................315 8.2 Generic Programming ........................................316 8.3 Geometric Programming ......................................318 8.4 Cgal ......................................................320 References Index  

Product Details

ISBN:
9783642069871
Author:
Boissonnat, Jean-daniel
Publisher:
Springer
Author:
Boissonnat, Jean-Daniel
Author:
Teillaud, Monique
Location:
Berlin, Heidelberg
Subject:
Number Systems
Subject:
CAGD
Subject:
computational geometry
Subject:
Computational topology
Subject:
Computer Algebra
Subject:
Differential geometry
Subject:
Surface approximation and meshing
Subject:
Computational Mathematics and Numerical Analysis
Subject:
Visualization
Subject:
Computer Imaging, Vision, Pattern Recognition and Graphics
Subject:
Numerical analysis
Subject:
Appl.Mathematics/Computational Methods of Engineering
Subject:
Engineering design
Subject:
Engineering Design <P>This title outlines the foundations of non-linear computational geometry. It covers combinatorial data structures and algorithms, algebraic issues in geometric computing, approximation of curves and surfaces, and computational topolo
Subject:
Mathematics-Introduction
Subject:
Counting & Numeration
Subject:
Mathematics
Subject:
Language, literature and biography
Subject:
mathematics and statistics
Subject:
Computer science_xMathematics
Subject:
Computer Vision
Subject:
Engineering mathematics
Copyright:
Edition Description:
Softcover reprint of hardcover 1st ed. 2006
Series:
Mathematics and Visualization
Publication Date:
20101027
Binding:
TRADE PAPER
Language:
English
Pages:
356
Dimensions:
235 x 155 mm 538 gr

Related Subjects

Computers and Internet » Computers Reference » General
Science and Mathematics » Chemistry » Organic
Science and Mathematics » Mathematics » Foundations and Logic
Science and Mathematics » Mathematics » General
Science and Mathematics » Mathematics » Geometry » Geometry and Trigonometry
Science and Mathematics » Mathematics » Introduction

Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization) New Trade Paper
0 stars - 0 reviews
$200.95 In Stock
Product details 356 pages Springer - English 9783642069871 Reviews:
spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.