Star Wars Sale

Special Offers see all

Enter to WIN!

Weekly drawing for $100 credit. Subscribe to for a chance to win.
Privacy Policy

More at Powell's

Recently Viewed clear list

Original Essays | June 20, 2014

Lauren Owen: IMG The Other Vampire

It's a wild and thundery night. Inside a ramshackle old manor house, a beautiful young girl lies asleep in bed. At the window, a figure watches... Continue »
  1. $18.90 Sale Hardcover add to wish list

    The Quick

    Lauren Owen 9780812993271

Qualifying orders ship free.
List price: $132.50
Used Hardcover
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
1 Partner Warehouse Mathematics- Advanced

Analysis With Introduction To Proof (4TH 05 - Old Edition)


Analysis With Introduction To Proof (4TH 05 - Old Edition) Cover




A student's first encounter with analysis has been widely regarded as the most difficult course in the undergraduate mathematics curriculum. This is due not so much to the complexity of the topics as to what the student is asked to do with them. After years of emphasizing computation (with only a brief diversion in high school geometry), the student is now expected to be able to read, understand, and actually construct mathematical proofs. Unfortunately, often very little groundwork has been laid to explain the nature and techniques of proof.

This text seeks to aid students in their transition to abstract mathematics in two ways: by providing an introductory discussion of logic, and by giving attention throughout the text to the structure and nature of the arguments being used. The first three editions have been praised for their readability and their student-oriented approach. This revision builds on those strengths. Small changes have been made in many sections to clarify the exposition, more than 150 new exercises have been added, and each section now ends with a review of key terms. This emphasizes the important role of definitions and helps students organize their studying. In the back of the book there is now a Glossary of Key Terms that gives the meaning of each term and lists the page on which the term is first introduced.

A unique feature of the text is the inclusion of more than 250 true/false questions that relate directly to the reading. These questions have been carefully worded to anticipate common student errors. They encourage the students to read the text carefully and think critically about what they have read. Often the justification for an answer of "false" will be an example that the students can add to their growing collection of counterexamples. The ordering of these true/false questions has been updated in this edition to follow more closely the flow of each section.

As in earlier editions, the text also includes more than a hundred practice problems. Generally, these problems are not very difficult, and it is intended that students should stop to work them as they read. The answers are given at the end of each section just prior to the exercises. The students should also be encouraged to read (if not attempt) most of the exercises. They are viewed as an integral part of the text and vary in difficulty from the routine to the challenging. Those exercises that are used in A later section are marked with an asterisk. Exercises marked by a star * have hints in the back of the book. These hints should be used only after a serious attempt to solve an exercise has proved futile.

The overall organization of the book remains the same as in the earlier editions. The first chapter takes a careful (albeit nontechnical) look at the laws of logic and then examines how these laws are used in the structuring of mathematical arguments. The second chapter discusses the two main foundations of analysis: sets and functions. This provides an elementary setting in which to practice the techniques encountered in the previous chapter.

Chapter 3 develops the properties of the real numbers R as a complete ordered field and introduces the topological concepts of neighborhoods, open sets, closed sets, and compact sets. The remaining chapters cover the topics usually included in an analysis of functions of a real variable: sequences, continuity, differentiation, integration, and series.

The text has been written in a way designed to provide flexibility in the pacing of topics. If only one term is available, the first chapter can be assigned as outside reading. Chapter 2 and the first half of Chapter 3 can be covered quickly, again with much of the reading being left to the student. By so doing, the remainder of the book can be covered adequately in a single semester. Alternatively, depending on the students' background and interests, one can concentrate on developing the first five chapters in some detail. By placing a greater emphasis on the early material, the text can be used in a "transitional" course whose main goal is to teach mathematical reasoning and to illustrate its use in developing an abstract structure. It is also possible to skip derivatives and integrals and go directly to series, since the only results needed from these two chapters will be familiar to the student from beginning calculus.

A thorough treatment of the whole book would require two semesters. At this slower pacing the book provides a unified approach to a course in foundations followed by a course in analysis. Students going into secondary education will profit greatly from the first course, and those going on to graduate school in either pure or applied mathematics will want to take both semesters.

I appreciate the helpful comments that I have received from users of earlier editions and reviewers of the fourth. In particular, I would like to thank Professors Peter Lappan (Michigan State Univ.), John Konvalina (Univ. of Nebraska at Omaha), Aimo Hinkkanen (Univ. of Illinois at Urbana-Champaign), and Jerry Muir (Rose-Hulman Institute of Technology). I am also grateful to my students at Lee University for their numerous suggestions.

Steven R. Lay

Product Details

With an Introduction to Proof
Lay, Steven
Lay, Steven R.
Mathematical Analysis
Functional Analysis
Proof theory
Mathematics : Functional Analysis
Edition Number:
Publication Date:
December 2004
Grade Level:
College/higher education:
9.3 x 8 x 1 in 916 gr

Other books you might like

  1. Friendly Introduction To Number... Used Hardcover $80.00
  2. Sister Freaks: Stories of Women Who... Used Trade Paper $5.95
  3. Jesus Freaks Volume 2 Used Trade Paper $5.95

Related Subjects

Engineering » Environmental Engineering » Forestry
Health and Self-Help » Health and Medicine » Nursing
Science and Mathematics » Mathematics » Advanced
Science and Mathematics » Mathematics » Foundations and Logic
Science and Mathematics » Mathematics » Functional Analysis
Science and Mathematics » Mathematics » Logic and Philosophy
Science and Mathematics » Mathematics » Real Analysis

Analysis With Introduction To Proof (4TH 05 - Old Edition) Used Hardcover
0 stars - 0 reviews
$89.00 In Stock
Product details 400 pages Prentice Hall - English 9780131481015 Reviews:
"Synopsis" by , By introducing logic and by emphasizing the structure and nature of the arguments used, this book helps readers transition from computationally oriented mathematics to abstract mathematics with its emphasis on proofs. Uses clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers. Offers a new boxed review of key terms after each section. Rewrites many exercises. Features more than 250 true/false questions. Includes more than 100 practice problems. Provides exceptionally high-quality drawings to illustrate key ideas. Provides numerous examples and more than 1,000 exercises. A thorough reference for readers who need to increase or brush up on their advanced mathematics skills.
  • back to top
Follow us on...

Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at