Master your Minecraft
 
 

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Tour our stores


    Recently Viewed clear list


    Best Books of the Year | December 7, 2014

    Gigi Little: IMG Best Kids' Books of 2014



    No, I'm sorry, it's impossible. The best kids' books of 2014? The best? Can't do it. There have been entirely too many exceptional examples of the... Continue »
    1. $11.87 Sale Board Book add to wish list

      Countablock

      Christopher Franceschelli and Peskimo 9781419713743

    spacer
Qualifying orders ship free.
$10.98
Sale Hardcover
Ships in 1 to 3 days
Add to Wishlist
Qty Store Section
2 Beaverton History of Science- Technology
8 Hawthorne COMP- COMPUTERS

Turing's Cathedral: The Origins of the Digital Universe

by

Turing's Cathedral: The Origins of the Digital Universe Cover

ISBN13: 9780375422775
ISBN10: 0375422773
Condition:
All Product Details

 

 

Excerpt

Preface

 

POINT SOURCE SOLUTION

 

I am thinking about something much more important than bombs. I am thinking about computers.

—John von Neumann, 1946

 

 

There are two kinds of creation myths: those where life arises out of the mud, and those where life falls from the sky. In this creation myth, computers arose from the mud, and code fell from the sky.

 

In late 1945, at the Institute for Advanced Study in Princeton, New Jersey, Hungarian American mathematician John von Neumann gathered a small group of engineers to begin designing, building, and programming an electronic digital computer, with five kilobytes of storage, whose attention could be switched in 24 microseconds from one memory location to the next. The entire digital universe can be traced directly to this 32-by-32-by-40-bit nucleus: less memory than is allocated to displaying a single icon on a computer screen today.

 

Von Neumann’s project was the physical realization of Alan Turing’s Universal Machine, a theoretical construct invented in 1936. It was not the first computer. It was not even the second or third computer. It was, however, among the first computers to make full use of a high-speed random-access storage matrix, and became the machine whose coding was most widely replicated and whose logical architecture was most widely reproduced. The stored-program computer, as conceived by Alan Turing and delivered by John von Neumann, broke the distinction between numbers that mean things and numbers that do things. Our universe would never be the same.

 

Working outside the bounds of industry, breaking the rules of academia, and relying largely on the U.S. government for support, a dozen engineers in their twenties and thirties designed and built von Neumann’s computer for less than $1 million in under five years. “He was in the right place at the right time with the right connections with the right idea,” remembers Willis Ware, fourth to be hired to join the engineering team, “setting aside the hassle that will probably never be resolved as to whose ideas they really were.”

 

As World War II drew to a close, the scientists who had built the atomic bomb at Los Alamos wondered, “What’s next?” Some, including Richard Feynman, vowed never to have anything to do with nuclear weapons or military secrecy again. Others, including Edward Teller and John von Neumann, were eager to develop more advanced nuclear weapons, especially the “Super,” or hydrogen bomb. Just before dawn on the morning of July 16, 1945, the New Mexico desert was illuminated by an explosion “brighter than a thousand suns.” Eight and a half years later, an explosion one thousand times more powerful illuminated the skies over Bikini Atoll. The race to build the hydrogen bomb was accelerated by von Neumann’s desire to build a computer, and the push to build von Neumann’s computer was accelerated by the race to build a hydrogen bomb.

 

Computers were essential to the initiation of nuclear explosions, and to understanding what happens next. In “Point Source Solution,” a 1947 Los Alamos report on the shock waves produced by nuclear explosions, von Neumann explained that “for very violent explosions . . . it may be justified to treat the original, central, high pressure area as a point.” This approximated the physical reality of a nuclear explosion closely enough to enable some of the first useful predictions of weapons effects.

 

Numerical simulation of chain reactions within computers initiated a chain reaction among computers, with machines and codes proliferating as explosively as the phenomena they were designed to help us understand. It is no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. Only the collective intelligence of computers could save us from the destructive powers of the weapons they had allowed us to invent.

 

Turing’s model of universal computation was one-dimensional: a string of symbols encoded on a tape. Von Neumann’s implementation of Turing’s model was two-dimensional: the address matrix underlying all computers in use today. The landscape is now three-dimensional, yet the entire Internet can still be viewed as a common tape shared by a multitude of Turing’s Universal Machines.

 

Where does time fit in? Time in the digital universe and time in our universe are governed by entirely different clocks. In our universe, time is a continuum. In a digital universe, time (T) is a countable number of discrete, sequential steps. A digital universe is bounded at the beginning, when T = 0, and at the end, if T comes to a stop. Even in a perfectly deterministic universe, there is no consistent method to predict the ending in advance. To an observer in our universe, the digital universe appears to be speeding up. To an observer in the digital universe, our universe appears to be slowing down.

 

Universal codes and universal machines, introduced by Alan Turing in his “On Computable Numbers, with an Application to the Entscheidungsproblem” of 1936, have prospered to such an extent that Turing’s underlying interest in the “decision problem” is easily overlooked. In answering the Entscheidungsproblem, Turing proved that there is no systematic way to tell, by looking at a code, what that code will do. That’s what makes the digital universe so interesting, and that’s what brings us here.

 

It is impossible to predict where the digital universe is going, but it is possible to understand how it began. The origin of the first fully electronic random-access storage matrix, and the propagation of the codes that it engendered, is as close to a point source as any approximation can get.

What Our Readers Are Saying

Add a comment for a chance to win!
Average customer rating based on 1 comment:

homer, December 6, 2014 (view all comments by homer)
Alan Turing was a fascinating man and I wish there were more information about him. Thanks for having this book on display. I plan to buy it.
Was this comment helpful? | Yes | No

Product Details

ISBN:
9780375422775
Author:
Dyson, George
Publisher:
Pantheon Books
Subject:
General science
Subject:
Science Reference-General
Subject:
Computers Reference-History and Society
Subject:
Science & Technology
Copyright:
Publication Date:
20120331
Binding:
HARDCOVER
Language:
English
Illustrations:
16 PAGES BandW ILLUSTRATIONS
Pages:
432
Dimensions:
9.5 x 6.6 x 1.4 in 1.8 lb

Other books you might like

  1. Trading Roles: Gender, Ethnicity,... Used Trade Paper $19.00
  2. Being Good: Women's Moral Values in... Used Trade Paper $10.95
  3. China Marches West: The Qing... New Trade Paper $27.25

Related Subjects

Arts and Entertainment » Sale Books
Biography » Science and Technology
Computers and Internet » Computers Reference » Beginning and Reference
Computers and Internet » Computers Reference » General
Computers and Internet » Computers Reference » History and Society
Computers and Internet » Personal Computers » General
Engineering » Engineering » History
Featured Titles » Arts
Featured Titles » General
Featured Titles » Science
Fiction and Poetry » Literature » A to Z
Reference » Sale Books
Reference » Science Reference » General
Science and Mathematics » Featured Titles in Tech » New Arrivals
Science and Mathematics » History of Science » General
Science and Mathematics » History of Science » Technology

Turing's Cathedral: The Origins of the Digital Universe Used Hardcover
0 stars - 0 reviews
$10.98 In Stock
Product details 432 pages Pantheon Books - English 9780375422775 Reviews:
"Publishers Weekly Review" by , "An overstuffed meditation on all things digital sprouts from this engrossing study of how engineers at Princeton's Institute for Advanced Studies, under charismatic mathematician John von Neumann (the book should really be titled Von Neumann's Cathedral), built a pioneering computer (called MANIAC) in the years after WWII. To readers used to thinking of computers as magical black boxes, historian Dyson (Darwin Among the Machines) gives an arresting view of old-school mechanics hammering the first ones together from vacuum tubes, bicycle wheels, and punch-cards. Unfortunately, his account of technological innovations is too sketchy for laypeople to quite follow. The narrative frames a meandering tour of the breakthroughs enabled by early computers, from hydrogen bombs to weather forecasting, and grandiose musings on the digital worldview of MANIAC's creators, in which the author loosely connects the Internet, DNA, and the possibility of extraterrestrial invasion via interstellar radio signals. Dyson's portrait of the subculture of Von Neumann and other European émigré scientists who midwifed America's postwar technological order is lively and piquant. But the book bites off more science than it can chew, and its expositions of hard-to-digest concepts from Gödel's theorem to the Turing machine are too hasty and undeveloped to sink in. (Mar.)" Publishers Weekly Copyright PWxyz, LLC. All rights reserved.
"Synopsis" by , Legendary historian and philosopher of science George Dyson vividly re-creates the scenes of focused experimentation, incredible mathematical insight, and pure creative genius that gave us computers, digital television, modern genetics, models of stellar evolution—in other words, computer code.

In the 1940s and '50s, a group of eccentric geniuses—led by John von Neumann—gathered at the newly created Institute for Advanced Study in Princeton, New Jersey. Their joint project was the realization of the theoretical universal machine, an idea that had been put forth by mathematician Alan Turing. This group of brilliant engineers worked in isolation, almost entirely independent from industry and the traditional academic community. But because they relied exclusively on government funding, the government wanted its share of the results: the computer that they built also led directly to the hydrogen bomb. George Dyson has uncovered a wealth of new material about this project, and in bringing the story of these men and women and their ideas to life, he shows how the crucial advancements that dominated twentieth-century technology emerged from one computer in one laboratory, where the digital universe as we know it was born.

spacer
spacer
  • back to top

FOLLOW US ON...

     
Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.