This is Real Life Sale

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to
for a chance to win.
Privacy Policy

Visit our stores

    Recently Viewed clear list

    Required Reading | January 16, 2015

    Required Reading: Books That Changed Us

    We tend to think of reading as a cerebral endeavor, but every once in a while, it can spur action. The following books — ranging from... Continue »


This item may be
out of stock.

Click on the button below to search for this title in other formats.

Check for Availability
Add to Wishlist

Microelectronic Curcuits Revised Edition

Microelectronic Curcuits Revised Edition Cover


Synopses & Reviews

Publisher Comments:

This market-leading textbook continues its standard of excellence and innovation built on the solid pedagogical foundation that instructors expect from Adel S. Sedra and Kenneth C. Smith. All material in the fifth edition of Microelectronic Circuits is thoroughly updated to reflect changes in technology-CMOS technology in particular. These technological changes have shaped the book's organization and topical coverage, making it the most current resource available for teaching tomorrow's engineers how to analyze and design electronic circuits.

Features of the Fifth Edition

Streamlined Organizational Structure: The "must-cover" topics are placed first in each chapter; the more specialized material appears last. The first five chapters, Part I, are organized to form a coherent single-semester introductory course. Similarly, the next five chapters, Part II, present a body of material for a second one-semester course. The final four chapters, Part III, contain significant topics that can be used as enhancements or substitutes for some of the material in earlier chapters as well as resources for project or thesis work.

MOSFETs and BJTs: Chapter 4 (MOSFETs) and Chapter 5 (BJTs) are completely rewritten. The MOSFET coverage is placed first but the two devices can be covered in any desired order.

IC MOS and Bipolar Amplifiers: Chapter 6 (Single-Stage Integrated-Circuit Amplifiers) and Chapter 7 (Differential and Multistage Amplifiers) are completely rewritten to introduce IC MOS and bipolar amplifiers in an accessible, systematic way.

Amplifier Frequency Response: Amplifier frequency response is now presented where needed (a "just-in-time" approach). This includes brief coverage of the frequency responses of the common-source and common-emitter amplifiers in Chapters 4 and 5, respectively.

Enhanced Student Support

A new CD--packaged with every text--includes a free student version of PSpice 9.2 Lite Edition (SPICE simulator) and new industry-based design examples.

Revised summary sections and many more summary tables are presented.

Numerous new and varied review exercises and end-of-chapter problems are provided in addition to more SPICE examples with schematic captures.

An accompanying website ( features:

--SPICE Models

--Links to industry and academic sites of related interest

Enhanced Instructor Support

An Instructor's Manual with Transparency Masters contains solutions to all in-text exercises and end-of-chapter problems plus hard copy masters of transparency acetates. (978-0-19-517268-3)

PowerPoint Overheads on CD contain all of the figures with captions from the main text.


Today's Technology. Tomorrow's Engineers.

This market-leading textbook continues its standard of excellence and innovation built on the solid pedagogical foundation that instructors expect from Adel S. Sedra and Kenneth C. Smith. All material in the fifth edition of Microelectronic Circuits is thoroughly updated to reflect changes in technology-CMOS technology in particular. These technological changes have shaped the book's organization and topical coverage, making it the most current resource available for teaching tomorrow's engineers how to analyze and design electronic circuits.

About the Author

Adel S. Sedra is Dean of the Faculty of Engineering at the University of Waterloo and former Provost of the University of Toronto.

Kenneth C. Smith (KC) is Professor Emeritus in Electrical and Computer Engineering, Computer Science, Mechanical Engineering, and Information Studies at the University of Toronto.

Table of Contents


Each chapter begins with an Introduction and ends with a Summary and Problems.



1. Introduction to Electronics

1.1. Signals

1.2. Frequency Spectrum of Signals

1.3. Analog and Digital Signals

1.4. Amplifiers

1.4.1. Signal Amplification

1.4.2. Amplifier Circuit Symbol

1.4.3. Voltage Gain

1.4.4. Power Gain and Current Gain

1.4.5. Expressing Gain in Decibels

1.4.6. The Amplifier Power Supplies

1.4.7. Amplifier Saturation

1.4.8. Nonlinear Transfer Characteristics and Biasing

1.4.9. Symbol Convention

1.5. Circuit Models for Amplifiers

1.5.1. Voltage Amplifiers

1.5.2. Cascaded Amplifiers

1.5.3. Other Amplifier Types

1.5.4. Relationships Between the Four Amplifier Models

1.6. Frequency Response of Amplifiers

1.6.1. Measuring the Amplifier Frequency Response

1.6.2. Amplifier Bandwidth

1.6.3. Evaluating the Frequency Response of Amplifiers

1.6.4. Single-Time-Constant Networks

1.6.5. Classification of Amplifiers Based on Frequency Response

1.7. Digital Logic Inverters

1.7.1. Function of the Inverter

1.7.2. The Voltage Transfer Characteristic (VTC)

1.7.3. Noise Margins

1.7.4. The Ideal VTC

1.7.5. Inverter Implementation

1.7.6. Power Dissipation

1.7.7. Propagation Delay

1.8. Circuit Simulation Using SPICE

2. Operational Amplifiers

2.1. The Ideal Op Amp

2.1.1. The Op-Amp Terminals

2.1.2. Function and Characteristics of the Ideal Op Amp

2.1.3. Differential and Common-Mode Signals

2.2. The Inverting Configuration

2.2.1. The Closed-Loop Gain

2.2.2. Effect of Finite Open-Loop Gain

2.2.3. Input and Output Resistances

2.2.4. An Important Application--The Weighted Summer

2.3. The Noninverting Configuration

2.3.1. The Closed-Loop Gain

2.3.2. Characteristics of the Noninverting Configuration

2.3.3. Effect of Finite Open-Loop Gain

2.3.4. The Voltage Follower

2.4. Difference Amplifiers

2.4.1. A Single Op-Amp Difference Amplifier

2.4.2. A Superior Circuit--The Instrumentation Amplifier

2.5. Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance

2.5.1. Frequency Dependence of the Open-Loop Gain

2.5.2. Frequency Response of Closed-Loop Amplifiers

2.6. Large-Signal Operation of Op Amps

2.6.1. Output Voltage Saturation

2.6.2. Output Current Limits

2.6.3. Slew Rate

2.6.4. Full-Power Bandwidth

2.7. DC Imperfections

2.7.1. Offset Voltage

2.7.2. Input Bias and Offset Currents

2.8. Integrators and Differentiators

2.8.1. The Inverting Configuration with General Impedances

2.8.2. The Inverting Integrator

2.8.3. The Op-Amp Differentiator

2.9. The SPICE Op-Amp Model and Simulation Examples

2.9.1. Linear Macromodel

2.9.2. Nonlinear Macromodel

3. Diodes

3.1. The Ideal Diode

3.1.1. Current-Voltage Characteristic

3.1.2. A Simple Application: The Rectifier

3.1.3. Another Application: Diode Logic Gates

3.2. Terminal Characteristics of Junction Diodes

3.2.1. The Forward-Bias Region

3.2.2. The Reverse-Bias Region

3.2.3. The Breakdown Region

3.3. Modeling the Diode Forward Characteristic

3.3.1. The Exponential Model

3.3.2. Graphical Analysis Using the Exponential Model

3.3.3. Iterative Analysis Using the Exponential Model

3.3.4. The Need for Rapid Analysis

3.3.5. The Piecewise-Linear Model

3.3.6. The Constant-Voltage-Drop Model

3.3.7. The Ideal-Diode Model

3.3.8. The Small-Signal Model

3.3.9. Use of the Diode Forward Drop in Voltage Regulation

3.3.10. Summary

3.4. Operation in the Reverse Breakdown Region--Zener Diodes

3.4.1. Specifying and Modeling the Zener Diode

3.4.2. Use of the Zener as a Shunt Regulator

3.4.3. Temperature Effects

3.4.4. A Final Remark

3.5. Rectifier Circuits

3.5.1. The Half-Wave Rectifier

3.5.2. The Full-Wave Rectifier

3.5.3. The Bridge Rectifier

3.5.4. The Rectifier with a Filter Capacitor--The Peak Rectifier

3.5.5. Precision Half-Wave Rectifier--The Super Diode

3.6. Limiting and Clamping Circuits

3.6.1. Limiter Circuits

3.6.2. The Clamped Capacitor or DC Restorer

3.6.3. The Voltage Doubler

3.7. Physical Operation of Diodes

3.7.1. Basic Semiconductor Concepts

3.7.2. The pn Junction Under Open-Circuit Conditions

3.7.3. The pn Junction Under Reverse-Bias Conditions

3.7.4. The pn Junction in the Breakdown Region

3.7.5. The pn Junction Under Forward-Bias Conditions

3.7.6. Summary

3.8. Special Diode Types

3.8.1. The Schottky-Barrier Diode (SBD)

3.8.2. Varactors

3.8.3. Photodiodes

3.8.4. Light-Emitting Diodes (LEDs)

3.9. The SPICE Diode Model and Simulation Examples

3.9.1. The Diode Model

3.9.2. The Zener Diode Model

4. MOS Field-Effect Transistors (MOSFETs)

4.1. Device Structure and Physical Operation

4.1.1. Device Structure

4.1.2. Operation with No Gate Voltage

4.1.3. Creating a Channel for Current Flow

4.1.4. Applying a Small vDS

4.1.5. Operation as vDS Is Increased

4.1.6. Derivation of the iD -vDS Relationship

4.1.7. The p-Channel MOSFET

4.1.8. Complementary MOS or CMOS

4.1.9. Operating the MOS Transistor in the Subthreshold Region

4.2. Current-Voltage Characteristics

4.2.1. Circuit Symbol

4.2.2. The iD -vDS Characteristics

4.2.3. Finite Output Resistance in Saturation

4.2.4. Characteristics of the p-Channel MOSFET

4.2.5. The Role of the Substrate--The Body Effect

4.2.6. Temperature Effects

4.2.7. Breakdown and Input Protection

4.2.8. Summary

4.3. MOSFET Circuits at DC

4.4. The MOSFET as an Amplifier and as a Switch

4.4.1. Large-Signal Operation--The Transfer Characteristic

4.4.2. Graphical Derivation of the Transfer Characteristic

4.4.3. Operation as a Switch

4.4.4. Operation as a Linear Amplifier

4.4.5. Analytical Expressions for the Transfer Characteristic

4.4.6. A Final Remark on Biasing

4.5. Biasing in MOS Amplifier Circuits

4.5.1. Biasing by Fixing VGS

4.5.2. Biasing by Fixing VG and Connecting a Resistance in the Source

4.5.3. Biasing Using a Drain-to-Gate Feedback Resistor

4.5.4. Biasing Using a Constant-Current Source

4.5.5. A Final Remark

4.6. Small-Signal Operation and Models

4.6.1. The DC Bias Point

4.6.2. The Signal Current in the Drain Terminal

4.6.3. The Voltage Gain

4.6.4. Separating the DC Analysis and the Signal Analysis

4.6.5. Small-Signal Equivalent-Circuit Models

4.6.6. The Transconductance gm

4.6.7. The T Equivalent-Circuit Model

4.6.8. Modeling the Body Effect

4.6.9. Summary

4.7 Single-Stage MOS Amplifiers.

4.7.1. The Basic Structure

4.7.2. Characterizing Amplifiers

4.7.3. The Common-Source (CS) Amplifier

4.7.4. The Common-Source Amplifier with a Source Resistance

4.7.5. The Common-Gate (CG) Amplifier

4.7.6. The Common-Drain or Source-Follower Amplifier

4.7.7. Summary and Comparisons

4.8. The MOSFET Internal Capacitances and High-Frequency Model

4.8.1. The Gate Capacitive Effect

4.8.2. The Junction Capacitances

4.8.3. The High-Frequency MOSFET Model

4.8.4. The MOSFET Unity-Gain Frequency ( fT )

4.8.5. Summary

4.9. Frequency Response of the CS Amplifier

4.9.1. The Three Frequency Bands

4.9.2. The High-Frequency Response

4.9.3. The Low-Frequency Response

4.9.4. A Final Remark

4.10. The CMOS Digital Logic Inverter

4.10.1. Circuit Operation

4.10.2. The Voltage Transfer Characteristic

4.10.3. Dynamic Operation

4.10.4. Current Flow and Power Dissipation

4.10.5. Summary

4.11. The Depletion-Type MOSFET

4.12. The SPICE MOSFET Model and Simulation Example

4.12.1. MOSFET Models

4.12.2. MOSFET Model Parameters

5. Bipolar Junction Transistors (BJTs)

5.1. Device Structure and Physical Operation

5.1.1. Simplified Structure and Modes of Operation 378

5.1.2. Operation of the npn Transistor in the Active Mode

5.1.3. Structure of Actual Transistors

5.1.4. The Ebers-Moll (EM) Model

5.1.5. Operation in the Saturation Mode

5.1.6. The pnp Transistor

5.2. Current-Voltage Characteristics

5.2.1. Circuit Symbols and Conventions

5.2.2. Graphical Representation of Transistor Characteristics

5.2.3. Dependence of iC on the Collector Voltage--The Early Effect

5.2.4. The Common-Emitter Characteristics

5.2.5. Transistor Breakdown

5.2.6. Summary

5.3. The BJT as an Amplifier and as a Switch

5.3.1. Large-Signal Operation--The Transfer Characteristic

5.3.2. Amplifier Gain

5.3.3. Graphical Analysis

5.3.4. Operation as a Switch

5.4. BJT Circuits at DC

5.5. Biasing in BJT Amplifier Circuits

5.5.1. The Classical Discrete-Circuit Bias Arrangement

5.5.2. A Two-Power-Supply Version of the Classical Bias Arrangement

5.5.3. Biasing Using a Collector-to-Base Feedback Resistor

5.5.4. Biasing Using a Constant-Current Source

5.6. Small-Signal Operation and Models

5.6.1. The Collector Current and the Transconductance

5.6.2. The Base Current and the Input Resistance at the Base

5.6.3. The Emitter Current and the Input Resistance at the Emitter

5.6.4. Voltage Gain

5.6.5. Separating the Signal and the DC Quantities

5.6.6. The Hybrid-p Model

5.6.7. The T Model

5.6.8. Application of the Small-Signal Equivalent Circuits

5.6.9. Performing Small-Signal Analysis Directly on the Circuit Diagram

5.6.10. Augmenting the Small-Signal Models to Account for the Early Effect

5.6.11. Summary

5.7. Single-Stage BJT Amplifiers

5.7.1. The Basic Structure

5.7.2. Characterizing BJT Amplifiers

5.7.3. The Common-Emitter (CE) Amplifier

5.7.4. The Common-Emitter Amplifier with an Emitter Resistance

5.7.5. The Common-Base (CB) Amplifier

5.7.6. The Common-Collector (CC) Amplifier or Emitter Follower

5.7.7. Summary and Comparisons

5.8. The BJT Internal Capacitances and High-Frequency Model

5.8.1. The Base-Charging or Diffusion Capacitance Cde

5.8.2. The Base-Emitter Junction Capacitance Cje

5.8.3. The Collector-Base Junction Capacitance Cm

5.8.4. The High-Frequency Hybrid-p Model

5.8.5. The Cutoff Frequency

5.8.6. Summary

5.9. Frequency Response of the Common-Emitter Amplifier

5.9.1. The Three Frequency Bands

5.9.2. The High-Frequency Response

5.9.3. The Low-Frequency Response

5.9.4. A Final Remark

5.10. The Basic BJT Digital Logic Inverter

5.10.1. The Voltage Transfer Characteristic

5.10.2. Saturated Versus Nonsaturated BJT Digital Circuits

5.11. The SPICE BJT Model and Simulation Examples

5.11.1. The SPICE Ebers-Moll Model of the BJT

5.11.2. The SPICE Gummel-Poon Model of the BJT

5.11.3. The SPICE BJT Model Parameters

5.11.4. The BJT Model Parameters BF and BR in SPICE


6. Single-Stage Integrated-Circuit Amplifiers

6.1. IC Design Philosophy

6.2. Comparison of the MOSFET and the BJT

6.2.1. Typical Values of MOSFET Parameters

6.2.2. Typical Values of IC BJT Parameters

6.2.3. Comparison of Important Characteristics

6.2.4. Combining MOS and Bipolar Transistors--BiCMOS Circuits

6.2.5 Validity of the Square-Law MOSFET Model.

6.3. IC Biasing--Current Sources, Current Mirrors, and Current-Steering Circuits

6.3.1. The Basic MOSFET Current Source

6.3.2. MOS Current-Steering Circuits

6.3.3. BJT Circuits

6.4. High-Frequency Response--General Considerations

6.4.1. The High-Frequency Gain Function

6.4.2. Determining the 3-dB Frequency fH

6.4.3. Using Open-Circuit Time Constants for the Approximate Determination of fH

6.4.4. Miller's Theorem

6.5. The Common-Source and Common-Emitter Amplifiers with Active Loads

6.5.1. The Common-Source Circuit

6.5.2. CMOS Implementation of the Common-Source Amplifier

6.5.3. The Common-Emitter Circuit

6.6. High-Frequency Response of the CS and CE Amplifiers

6.6.1. Analysis Using Miller's Theorem

6.6.2. Analysis Using Open-Circuit Time Constants

6.6.3. Exact Analysis

6.6.4. Adapting the Formulas for the Case of the CE Amplifier

6.6.5. The Situation When Rsig Is Low

6.7. The Common-Gate and Common-Base Amplifiers with Active Loads

6.7.1. The Common-Gate Amplifier

6.7.2. The Common-Base Amplifier

6.7.3. A Concluding Remark

6.8. The Cascode Amplifier

6.8.1. The MOS Cascode

6.8.2. Frequency Response of the MOS Cascode

6.8.3. The BJT Cascode

6.8.4. A Cascode Current Source

6.8.5. Double Cascoding

6.8.6. The Folded Cascode

6.8.7. BiCMOS Cascodes

6.9. The CS and CE Amplifiers with Source (Emitter) Degeneration

6.9.1. The CS Amplifier with a Source Resistance

6.9.2. The CE Amplifier with an Emitter Resistance

6.10. The Source and Emitter Followers

6.10.1. The Source Follower

6.10.2. Frequency Response of the Source Follower

6.10.3. The Emitter Follower

6.11. Some Useful Transistor Pairings

6.11.1. The CD- CS, CC-CE and CD-CE Configurations

6.11.2. The Darlington Configuration

6.11.3. The CC-CB and CD-CG Configurations

6.12. Current-Mirror Circuits with Improved Performance

6.12.1. Cascode MOS Mirrors

6.12.2. A Bipolar Mirror with Base-Current Compensation

6.12.3. The Wilson Current Mirror

6.12.4. The Wilson MOS Mirror

6.12.5. The Widlar Current Source

6.13. SPICE Simulation Examples

7. Differential and Multistage Amplifiers

7.1. The MOS Differential Pair

7.1.1. Operation with a Common-Mode Input Voltage

7.1.2. Operation with a Differential Input Voltage

7.1.3. Large-Signal Operation

7.2. Small-Signal Operation of the MOS Differential Pair

7.2.1. Differential Gain

7.2.2. Common-Mode Gain and Common-Mode Rejection Ratio (CMRR)

7.3. The BJT Differential Pair

7.3.1. Basic Operation

7.3.2. Large-Signal Operation

7.3.3. Small-Signal Operation

7.4. Other Nonideal Characteristics of the Differential Amplifier

7.4.1. Input Offset Voltage of the MOS Differential Pair

7.4.2. Input Offset Voltage of the Bipolar Differential Pair

7.4.3. Input Bias and Offset Currents of the Bipolar Pair

7.4.4. Input Common-Mode Range

7.4.5. A Concluding Remark

7.5. The Differential Amplifier with Active Load

7.5.1. Differential-to-Single-Ended Conversion

7.5.2. The Active-Loaded MOS Differential Pair

7.5.3. Differential Gain of the Active-Loaded MOS Pair

7.5.4. Common-Mode Gain and CMRR

7.5.5. The Bipolar Differential Pair with Active Load

7.6. Frequency Response of the Differential Amplifier

7.6.1. Analysis of the Resistively Loaded MOS Amplifier

7.6.2. Analysis of the Active-Loaded MOS Amplifier

7.7. Multistage Amplifiers

7.7.1. A Two-Stage CMOS Op Amp

7.7.2. A Bipolar Op Amp

7.8. SPICE Simulation Example

8. Feedback

8.1. The General Feedback Structure

8.2. Some Properties of Negative Feedback

8.2.1. Gain Desensitivity

8.2.2. Bandwidth Extension

8.2.3. Noise Reduction

8.2.4. Reduction in Nonlinear Distortion

8.3. The Four Basic Feedback Topologies

8.3.1. Voltage Amplifiers

8.3.2. Current Amplifiers

8.3.3. Transconductance Amplifiers

8.3.4. Transresistance Amplifiers

8.4. The Series-Shunt Feedback Amplifier

8.4.1. The Ideal Situation

8.4.2. The Practical Situation

8.4.3. Summary

8.5. The Series-Series Feedback Amplifier

8.5.1. The Ideal Case

8.5.2. The Practical Case

8.5.3. Summary

8.6. The Shunt-Shunt and Shunt-Series Feedback Amplifiers

8.6.1. The Shunt-Shunt Configuration

8.6.2. An Important Note

8.6.3. The Shunt-Series Configuration

8.6.4. Summary of Results

8.7. Determining the Loop Gain

8.7.1. An Alternative Approach for Finding Ass

8.7.2. Equivalence of Circuits from a Feedback-Loop Point of View

8.8. The Stability Problem

8.8.1. Transfer Function of the Feedback Amplifier

8.8.2. The Nyquist Plot

8.9. Effect of Feedback on the Amplifier Poles

8.9.1. Stability and Pole Location

8.9.2. Poles of the Feedback Amplifier

8.9.3. Amplifier with Single-Pole Response

8.9.4. Amplifier with Two-Pole Response

8.9.5. Amplifiers with Three or More Poles

8.10. Stability Study Using Bode Plots

8.10.1. Gain and Phase Margins

8.10.2. Effect of Phase Margin on Closed-Loop Response

8.10.3. An Alternative Approach for Investigating Stability

8.11. Frequency Compensation

8.11.1. Theory

8.11.2. Implementation

8.11.3. Miller Compensation and Pole Splitting

8.12. SPICE Simulation Example

9. Operational-Amplifier and Data-Converter Circuits

9.1. The Two-Stage CMOS Op Amp

9.1.1. The Circuit

9.1.2. Input Common-Mode Range and Output Swing

9.1.3. Voltage Gain

9.1.4. Frequency Response

9.1.5. Slew Rate

9.2. The Folded-Cascode CMOS Op Amp

9.2.1. The Circuit

9.2.2. The Input Common-Mode Range and the Output Voltage Swing

9.2.3. Voltage Gain

9.2.4. Frequency Response

9.2.5. Slew Rate

9.2.6. Increasing the Input Common-Mode Range: Rail-to-Rail Operation

9.2.7. Increasing the Output Voltage Range: The Wide-Swing Current Mirror

9.3. The 741 Op-Amp Circuit

9.3.1. Bias Circuit

9.3.2. Short-Circuit Protection Circuitry

9.3.3. The Input Stage

9.3.4. The Second Stage

9.3.5. The Output Stage

9.3.6. Device Parameters

9.4. DC Analysis of the 741

9.4.1. Reference Bias Current

9.4.2. Input-Stage Bias

9.4.3. Input Bias and Offset Currents

9.4.4. Input Offset Voltage

9.4.5. Input Common-Mode Range

9.4.6. Second-Stage Bias

9.4.7. Output-Stage Bias

9.4.8. Summary

9.5. Small-Signal Analysis of the 741

9.5.1. The Input Stage

9.5.2. The Second Stage

9.5.3. The Output Stage

9.6. Gain, Frequency Response, and Slew Rate of the 741

9.6.1. Small-Signal Gain

9.6.2. Frequency Response

9.6.3. A Simplified Model

9.6.4. Slew Rate

9.6.5. Relationship Between ft and SR

9.7. Data Converters--an Introduction

9.7.1. Digital Processing of Signals

9.7.2. Sampling of Analog Signals

9.7.3. Signal Quantization

9.7.4. The A/D and D/A Converters as Functional Blocks

9.8. D/A Converter Circuits

9.8.1. Basic Circuit Using Binary-Weighted Resistors

9.8.2. R-2R Ladders

9.8.3. A Practical Circuit Implementation

9.8.4. Current Switches

9.9. A/D Converter Circuits

9.9.1. The Feedback-Type Converter

9.9.2. The Dual-Slope A/D Converter

9.9.3. The Parallel or Flash Converter

9.9.4 The Charge-Redistribution Converter.

9.10. SPICE Simulation Example

10. Digital CMOS Logic Circuits

10.1. Digital Circuit Design: An Overview

10.1.1. Digital IC Technologies and Logic-Circuit Families

10.1.2. Logic-Circuit Characterization

10.1.3. Styles for Digital System Design

10.1.4. Design Abstraction and Computer Aids

10.2. Design and Performance Analysis of the CMOS Inverter

10.2.1. Circuit Structure

10.2.2. Static Operation

10.2.3. Dynamic Operation

10.2.4. Dynamic Power Dissipation

10.3. CMOS Logic-Gate Circuits

10.3.1. Basic Structure

10.3.2. The Two-Input NOR Gate

10.3.3. The Two-Input NAND Gate

10.3.4. A Complex Gate

10.3.5. Obtaining the PUN from the PDN and Vice Versa

10.3.6. The Exclusive-OR Function

10.3.7. Summary of the Synthesis Method

10.3.8. Transistor Sizing

10.3.9. Effects of Fan-In and Fan-Out on Propagation Delay

10.4. Pseudo-NMOS Logic Circuits

10.4.1. The Pseudo-NMOS Inverter

10.4.2. Static Characteristics

10.4.3. Derivation of the VTC

10.4.4. Dynamic Operation

10.4.5. Design

10.4.6. Gate Circuits

10.4.7. Concluding Remarks

10.5. Pass-Transistor Logic Circuits

10.5.1. An Essential Design Requirement

10.5.2. Operation with NMOS Transistors as Switches

10.5.3. The Use of CMOS Transmission Gates as Switches

10.5.4. Pass-Transistor Logic Circuit Examples

10.5.5. A Final Remark

10.6. Dynamic Logic Circuits

10.6.1. Basic Principle

10.6.2. Nonideal Effects

10.6.3. Domino CMOS Logic

10.6.4. Concluding Remarks

10.7. Spice Simulation Example


11. Memory and Advanced Digital Circuits

11.1. Latches and Flip-flops

11.1.1. The Latch

11.1.2. The SR Flip-Flop

11.1.3. CMOS Implementation of SR Flip-Flops

11.1.4. A Simpler CMOS Implementation of the Clocked SA Flip-Flop

11.1.5. D Flip-Flop Circuits

11.2. Multivibrator Circuits

11.2.1. A CMOS Monostable Circuit

11.2.2. An Astable Circuit

11.2.3. The Ring Oscillator

11.3. Semiconductor Memories: Types and Architectures

11.3.1. Memory-Chip Organization

11.3.2. Memory-Chip Timing

11.4. Random-Access Memory (RAM) Cells

11.4.1. Static Memory Cell

11.4.2. Dynamic Memory Cell

11.5. Sense Amplifiers and Address Decoders

11.5.1. The Sense Amplifier

11.5.2. The Row-Address Decoder

11.5.3. The Column-Address Decoder

11.6. Read-Only Memory (ROM)

11.6.1. A MOS ROM

11.6.2. Mask-Programmable ROMs

11.6.3. Programmable ROMs (PROMs and EPROMs)

11.7. Emitter-Coupled Logic (ECL)

11.7.1. The Basic Principle

11.7.2. ECL Families

11.7.3. The Basic Gate Circuit

11.7.4. Voltage Transfer Characteristics

11.7.5. Fan-Out

11.7.6. Speed of Operation and Signal Transmission

11.7.7. Power Dissipation

11.7.8. Thermal Effects

11.7.9. The Wired-OR Capability

11.7.10. Some Final Remarks

11.8. BiCMOS Digital Circuits

11.8.1. The BiCMOS Inverter

11.8.2. Dynamic Operation

11.8.3. BiCMOS Logic Gates

11.9. SPICE Simulation Example

12. Filters and Tuned Amplifiers

12.1. Filter Transmission, Types, and Specification

12.1.1. Filter Transmission

12.1.2. Filter Types

12.1.3. Filter Specification

12.2. The Filter Transfer Function

12.3. Butterworth and Chebyshev Filters

12.3.1. The Butterworth Filter

12.3.2. The Chebyshev Filter

12.4. First-Order and Second-Order Filter Functions

12.4.1. First-Order Filters

12.4.2. Second-Order Filter Functions

12.5. The Second-Order LCR Resonator

12.5.1. The Resonator Natural Modes

12.5.2. Realization of Transmission Zeros

12.5.3. Realization of the Low-Pass Function

12.5.4. Realization of the High-Pass Function

12.5.5. Realization of the Bandpass Function

12.5.6. Realization of the Notch Functions

12.5.7. Realization of the All-Pass Function

12.6. Second-Order Active Filters Based on Inductor Replacement

12.6.1. The Antoniou Inductance-Simulation Circuit

12.6.2. The Op Amp-RC Resonator

12.6.3. Realization of the Various Filter Types

12.6.4. The All-Pass Circuit

12.7. Second-Order Active Filters Based on the Two-Integrator-Loop Topology

12.7.1. Derivation of the Two-Integrator-Loop Biquad

12.7.2. Circuit Implementation

12.7.3. An Alternative Two-Integrator-Loop Biquad Circuit

12.7.4. Final Remarks

12.8. Single-Amplifier Biquadratic Active Filters

12.8.1. Synthesis of the Feedback Loop

12.8.2. Injecting the Input Signal

12.8.3. Generation of Equivalent Feedback Loops

12.9. Sensitivity

12.10. Switched-Capacitor Filters

12.10.1. The Basic Principle

12.10.2. Practical Circuits

12.10.3. A Final Remark

12.11. Tuned Amplifiers

12.11.1. The Basic Principle

12.11.2. Inductor Losses

12.11.3. Use of Transformers

12.11.4. Amplifiers with Multiple Tuned Circuits

12.11.5. The Cascode and the CC-CB Cascade

12.11.6. Synchronous Tuning

12.11.7. Stagger-Tuning

12.12. SPICE Simulation Examples

13. Signal Generators and Waveform-Shaping Circuits

13.1. Basic Principles of Sinusoidal Oscillators

13.1.1. The Oscillator Feedback Loop

13.1.2. The Oscillation Criterion

13.1.3. Nonlinear Amplitude Control

13.1.4. A Popular Limiter Circuit for Amplitude Control

13.2. Op Amp-RC Oscillator Circuits

13.2.1. The Wien-Bridge Oscillator

13.2.2. The Phase-Shift Oscillator

13.2.3. The Quadrature Oscillator

13.2.4. The Active-Filter-Tuned Oscillator

13.2.5. A Final Remark

13.3. LC and Crystal Oscillators

13.3.1. LC-Tuned Oscillators

13.3.2. Crystal Oscillators

13.4. Bistable Multivibrators

13.4.1. The Feedback Loop

13.4.2. Transfer Characteristics of the Bistable Circuit

13.4.3. Triggering the Bistable Circuit

13.4.4. The Bistable Circuit as a Memory Element

13.4.5. A Bistable Circuit with Noninverting Transfer Characteristics

13.4.6. Application of the Bistable Circuit as a Comparator

13.4.7. Making the Output Levels More Precise

13.5. Generation of Square and Triangular Waveforms Using Astable Multivibrators

13.5.1. Operation of the Astable Multivibrator

13.5.2. Generation of Triangular Waveforms

13.6. Generation of a Standardized Pulse--The Monostable Multivibrator

13.7. Integrated-Circuit Timers

13.7.1. The 555 Circuit

13.7.2. Implementing a Monostable Multivibrator Using the 555 IC

13.7.3. An Astable Multivibrator Using the 555 IC

13.8. Nonlinear Waveform-Shaping Circuits

13.8.1. The Breakpoint Method

13.8.2. The Nonlinear-Amplification Method

13.9. Precision Rectifier Circuits

13.9.1. Precision Half-Wave Rectifier-The "Superdiode"

13.9.2. An Alternative Circuit

13.9.3. An Application: Measuring AC Voltages

13.9.4. Precision Full-Wave Rectifier

13.9.5. A Precision Bridge Rectifier for Instrumentation Applications

13.9.6. Precision Peak Rectifiers

13.9.7. A Buffered Precision Peak Detector

13.9.8. A Precision Clamping Circuit

13.10. SPICE Simulation Examples

14. Output Stages and Power Amplifiers

14.1. Classification of Output Stages

14.2. Class A Output Stage

14.2.1. Transfer Characteristic

14.2.2. Signal Waveforms

14.2.3. Power Dissipation

14.2.4. Power-Conversion Efficiency

14.3. Class B Output Stage

14.3.1. Circuit Operation

14.3.2. Transfer Characteristic

14.3.3. Power-Conversion Efficiency

14.3.4. Power Dissipation

14.3.5. Reducing Crossover Distortion

14.3.6. Single-Supply Operation

14.4. Class AB Output Stage

14.4.1. Circuit Operation

14.4.2. Output Resistance

14.5. Biasing the Class AB Circuit

14.5.1. Biasing Using Diodes

14.5.2. Biasing Using the VBE Multiplier

14.6. Power BJTs

14.6.1. Junction Temperature

14.6.2. Thermal Resistance

14.6.3. Power Dissipation Versus Temperature

14.6.4. Transistor Case and Heat Sink

14.6.5. The BJT Safe Operating Area

14.6.6. Parameter Values of Power Transistors

14.7. Variations on the Class AB Configuration

14.7.1. Use of Input Emitter Followers

14.7.2. Use of Compound Devices

14.7.3. Short-Circuit Protection

14.7.4. Thermal Shutdown

14.8. IC Power Amplifiers

14.8.1. A Fixed-Gain IC Power Amplifier

14.8.2. Power Op Amps

14.8.3. The Bridge Amplifier

14.9. MOS Power Transistors

14.9.1. Structure of the Power MOSFET

14.9.2. Characteristics of Power MOSFETs

14.9.3. Temperature Effects

14.9.4. Comparison with BJTs

14.9.5. A Class AB Output Stage Utilizing MOSFETs

14.10. SPICE Simulation Example


A. VLSI Fabrication Technology

B. Two-Port Network Parameters

C. Some Useful Network Theorems

D. Single-Time-Constant Circuits

E. s-Domain Analysis: Poles, Zeros, and Bode Plots

F. Bibliography

G. Standard Resistance Values and Unit Prefixes

H. Answers to Selected Problems


Product Details

Oxford University Press, USA
Engineering / Electrical
Smith, Kenneth C.
Sedra, Adel S.
Electronics - Microelectronics
Electronics - Circuits - Integrated
Edition Description:
Oxford Series in Electrical and Computer Engineering
Publication Date:
August 2003
Grade Level:
College/higher education:
10.20x8.20x2.00 in. 5.90 lbs.

Related Subjects

Science and Mathematics » Electricity » General Electronics

Microelectronic Curcuits Revised Edition
0 stars - 0 reviews
$ In Stock
Product details 1283 pages Oxford University Press, USA - English 9780195338836 Reviews:
"Synopsis" by , Today's Technology. Tomorrow's Engineers.

This market-leading textbook continues its standard of excellence and innovation built on the solid pedagogical foundation that instructors expect from Adel S. Sedra and Kenneth C. Smith. All material in the fifth edition of Microelectronic Circuits is thoroughly updated to reflect changes in technology-CMOS technology in particular. These technological changes have shaped the book's organization and topical coverage, making it the most current resource available for teaching tomorrow's engineers how to analyze and design electronic circuits.

  • back to top


Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at