We Need Diverse Ya Sale

Special Offers see all

Enter to WIN a $100 Credit

Subscribe to PowellsBooks.news
for a chance to win.
Privacy Policy

Visit our stores

    Recently Viewed clear list

    Original Essays | June 10, 2015

    Rob Hart: IMG The End of Apocalypse

    My plan here is to write about how New York City disappears out from under your feet. So I wanted to include a picture of Apocalypse Lounge, a bar... Continue »
    1. $10.47 Sale Trade Paper add to wish list

      New Yorked (Ash McKenna)

      Rob Hart 9781940610405

Qualifying orders ship free.
List price: $205.75
Used Trade Paper
Ships in 1 to 3 days
Add to Wishlist
available for shipping or prepaid pickup only
Available for In-store Pickup
in 7 to 12 days
Qty Store Section
21 Partner Warehouse Engineering- General Engineering

More copies of this ISBN

Elements of Materials Science & Engineering 6TH Edition


Elements of Materials Science & Engineering 6TH Edition Cover

ISBN13: 9780201093148
ISBN10: 0201093146
Condition: Student Owned
All Product Details




No course in science or engineering may remain static. Not only does technology advance and scientific understanding increase, the academic framework undergoes changes. Thus, periodic revisions are desirable in an effort to optimize the value of a textbook for students who will be tomorrow's engineers.

Developments such as the high-temperature superconductors are exciting, and the scientific data such as that obtained from tunneling electron microscopes provide new insights. During the last decade, however, the evolving structure of the academic environment probably has had a more direct impact on introductory materials courses within the engineering curricula. Whereas academic departments will continue to have specialists in ceramics, in polymers, as well as to hybrid composites. Likewise, graduate students working with polyblends give cognizance to phase immiscibilities and to the microstructure/property relationships utilized by ceramists and metallurgists. Particulate processing is no longer restricted to ceramics, nor are engineering designs using magnets limited to metallic materials.

In view of these changes, the majority of the current generation of instructors can easily extend the topics of crystals from single-component metals to binary ceramic compounds, and even introduce simple molecular crystals when they tech an introductory materials course. Likewise, although reaction rates may differ, the same principles hold for the phase relationships of ceramics and polymers as they do for metals. Today's instructor easily handles these topics generically for the several types of materials.

The major modification to this edition has been in the attention to the commonality found within the materials field, in which structures and properties are considered generically for all materials rather than categorically by material classes--metals, polymers, ceramics, and semiconducters. The three photos present on the cover and chapters this sixth edition are symbolic of this generic view; each chosen to pictorially demonstrate the connection between structure, properties, and performance.


Chapter 1 remains as an introduction to the topic of materials, since undergraduate students generally relate to their product without giving thought to the materials within them. Chapter 2 reviews the necessary chemistry from the students' previous general chemistry courses, but in doing so extends the topics of bonding and atomic coordination. The topics of Chapters 3, 4, and 5 are common to all materials--crystal structure, disorder in solids, and phase relationships, respectively. Included for the first time in Chapter 5 are several molecular phase diagrams, chosen to emphasize immiscibility, which is pertinent to the more recently developed polyblends.

Chapter 6 combines and extends the subject of reaction rates, while Chapter 7 does the same for an introduction to microstructure. Although the three principal classes of materials have distinct differences with respect to these two topics, the bases of the differences are instructive to the subject; for example, the crystallization rates of metallic, silicate, and polymeric materials.

Chapters 8, 9, and 10 focus on the mechanical behavior of solids. In sequence, they consider deformation, strengthening, and the characteristics of polymers and composites. Chapters 11, 12, and 13 look at the electromagnetic behavior of solids--conductivity, magnetic, and the dielectric and optical, respectively. These six chapters are written to give the instructor options regarding the topics to be selected, depending on the available time and curricular requirements.

The final chapter (14) addresses performance in service, particularly for severe conditions in which corrosion, fatigue, heat, or radiation may alter the structure and hence the properties of materials.


Teaching aids within the text include not only the Summary at the end of each chapter, but also nearly 175 Examples in which a procedure is outlined before the calculations are made. Wherever appropriate, followup comments supplement the calculations. Practice Problems at the end of each chapter offer a trial run for the student, and answers to these several hundred problems are available at the end of the text. A new end-of-chapter feature is the inclusion of Test Problems. Of the nearly 400 such problems throughout the book, the majority either are new to the text or are significantly modified from those in previous editions. More than 400 Terms and Concepts are defined in a glossary.

Supplementary Material

A study Guide that accompanies the text is available for students' use with this edition. It provides both a means for self-instruction when desired, or facilitates self-help for a lagging student. The Study Guide contains Quiz Samples (and their answers) as well as expanded solutions to the Practice Problems of the text. Also included are the more widely used study sets that appeared in Study Aids for Introductory Materials Courses. These visual aids, revised as necessary, have proven their merit in previous years in not having to delay class progress for those individuals who are not immediately clear on crystal structures, phase diagrams, diffusion, or other basic concepts.


It is with regret that I can not cite each and every individual who has contributed to the updating of this text. The list would include literally hundreds of students at The University of Michigan who have given feedback on assigned topics and study problems. The critical comments and suggestions of my academic colleagues in Ann Arbor have been most welcome and helpful. Likewise, academic associates in other materials science and engineering departments deserve recognition for both letters and personal discussions in regard to content and possible improvements.

The role of Professors Morris Cohen (Massachusetts Institute of Technology), Richard Porter (North Carolina State), and Ronald Gibala (University of Michigan) should be specifically acknowledged. Each critiqued the contents of this new edition in detail and provided an assurance of appropriateness of the changes. On the publishing side, I want to thank Don Fowley, Bette Aaronson, and all of the Addison-Wesley personnel for their attention to the multitude of editing and production details that lead to a quality product.

Finally, and most importantly, none of the revision efforts would have been possible without my wife Fran's patience and tolerance during recent months.

Ann Arbor, Michigan


What Our Readers Are Saying

Add a comment for a chance to win!
Average customer rating based on 2 comments:

hasan210, May 24, 2009 (view all comments by hasan210)
than you
Was this comment helpful? | Yes | No
kauravsk, September 16, 2006 (view all comments by kauravsk)
This is one of the best texts of own its kind in the world for the students to understand the stucture of material . Now a days across the world all physicist are working to make new advanced type material.
From my opinon " this is must have book for the student " without reading this we can loose some basic ideas of material. So this text book really create the interest in material science , because this is not so simple subject but using this book any one can easily grasp all important concepts.
" Best book for Material science"
Saket Singh Kaurav
M.SC. physics(student)
R D University Jabalpur (INDIA)
Was this comment helpful? | Yes | No
(0 of 1 readers found this comment helpful)
View all 2 comments

Product Details

Van Vlack, Lawrence H.
Prentice Hall
L. H. Van Vlack
Van Vlack, Lawrence H.
Van Vlack, L. H.
Reading, Mass. :
Engineering - Mechanical
Material Science
Materials Science-General
Edition Number:
Edition Description:
Trade paper
Addison-Wesley Series in Metallurgy & Materials Engineering
Series Volume:
[no. 84]
Publication Date:
January 1989
Grade Level:
College/higher education:
9 x 7.5 x 1.4 in 1039 gr

Other books you might like

  1. Statics for Engineers New Trade Paper $148.50
  2. Designing with Light: An... Used Trade Paper $12.95
  3. Basic Physics a Self Teaching Guide... Used Trade Paper $11.95
  4. Exploring Metalworking New Hardcover $16.95
  5. Breakthroughs in Science Skills New Trade Paper $11.75
  6. Applied Thermodynamics for... New Trade Paper $101.50

Related Subjects

Engineering » Engineering » General Engineering
Engineering » Mechanical Engineering » General
Science and Mathematics » Materials Science » General

Elements of Materials Science & Engineering 6TH Edition Used Trade Paper
0 stars - 0 reviews
$139.00 In Stock
Product details 610 pages Prentice Hall - English 9780201093148 Reviews:
  • back to top


Powell's City of Books is an independent bookstore in Portland, Oregon, that fills a whole city block with more than a million new, used, and out of print books. Shop those shelves — plus literally millions more books, DVDs, and gifts — here at Powells.com.