Synopses & Reviews
This book gives a clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory and explains how to use these methods to obtain approximate analytical solutions to differential and difference equations. These methods allow one to analyze physics and engineering problems that may not be solvable in closed form and for which brute-force numerical methods may not converge to useful solutions. The objective of this book is to teaching the insights and problem-solving skills that are most useful in solving mathematical problems arising in the course of modern research. Intended for graduate students and advanced undergraduates, the book assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations; develops local asymptotic methods for differential and difference equations; explains perturbation and summation theory; and concludes with a an exposition of global asymptotic methods, including boundary-layer theory, WKB theory, and multiple-scale analysis. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach the reader how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions; over 600 problems, of varying levels of difficulty; and an appendix summarizing the properties of special functions.
Review
"This book is a reprint of the original published by McGraw-Hill \ref [MR0538168 (80d:00030)]. The only changes are the addition of the Roman numeral I to the title and the provision of a subtitle, "Asymptotic methods and perturbation theory". This latter improvement is much needed, as the original title suggested that this was a teaching book for undergraduate scientists and engineers. It is not, but is an excellent introduction to asymptotic and perturbation methods for master's degree students or beginning research students. Certain parts of it could be used for a course in asymptotics for final year undergraduates in applied mathematics or mathematical physics. This is a book that has stood the test of time and I cannot but endorse the remarks of the original reviewer. It is written in a fresh and lively style and the many graphs and tables, comparing the results of exact and approximate methods, were in advance of its time. I have owned a copy of the original for over twenty years, using it on a regular basis, and, after the original had gone out of print, lending it to my research students. Springer-Verlag has done a great service to users of, and researchers in, asymptotics and perturbation theory by reprinting this classic." (A.D. Wood, Mathematical Reviews)
Synopsis
This book gives a clear, practical and self-contained presentation of the methods of asymptotics and pertubation theory for obtaining approximate analytical solutions to differential and difference equations. The presentation provides insights that will be useful approaching new problems.
Synopsis
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Table of Contents
I Preface. 1 Ordinary Differential Equations. 2 Difference Equations. 3 Approximate Solution of Linear Differential Equations. 4 Approximate Solution of Nonlinear Equations. 5 Approximate Solution of Difference Equations. 6 Asymptotic Expansion of Integrals. 7 Perturbation Series. 8 Summation of Series. 9 Boundary Layer Theory. 10 WKB Theory. 11 Multiple Scales Analysis. Appendix, References, Index