Synopses & Reviews
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews
Synopsis
Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and students in mathematics. This book is based on lectures given by the author at the Tata Institute in Bombay and elsewhere. This new edition includes an appendix on algebraic geometry that contains required definitions and results needed to understand the core of the book.
Table of Contents
Preface to the First Edition.- Preface to the Second Edition.- "Classical" K-Theory.- The Plus Construction.- The Classifying Space of a Small Category.- Exact Categories and Quillen's Q-Construction.- The K-Theory of Rings and Schemes.- Proofs of the Theorems of Chapter 4.- Comparison of the Plus and Q-Constructions.- The Merkurjev--Suslin Theorem.- Localization for Singular Varieties.- Appendix A. Results from Topology.- Appendix B. Results from Category Theory.- Appendix C. Exact Couples.- Appendix D. Results from Algebraic Geometry.- Bibliography.