Synopses & Reviews
A solid introduction to applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented such that graduates and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory, with many of the topics presented in a novel way, emphasising explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Synopsis
Symmetry methods have long been recognized to be of great importance for the study of the differential equations. This book provides a solid introduction to those applications of Lie groups to differential equations which have proved to be useful in practice. The computational methods are presented so that graduate students and researchers can readily learn to use them. Following an exposition of the applications, the book develops the underlying theory. Many of the topics are presented in a novel way, with an emphasis on explicit examples and computations. Further examples, as well as new theoretical developments, appear in the exercises at the end of each chapter.
Table of Contents
Introduction to Lie Groups.- Symmetry Groups of Differential Equations.- Group-Invariant Solutions.- Symmetry Groups and Conservation Laws.- Generalized Symmetries.- Finite Dimensional Hamiltonian Systems.- Hamiltonian Methods for Evolution Equations.