Synopses & Reviews
This book provides a comprehensive and up-to-date treatment of research carried out in the last twenty years on congruences involving the values of L-functions (attached to quadratic characters) at certain special values. There is no other book on the market which deals with this subject. The book presents in a unified way congruences found by many authors over the years, from the classical ones of Gauss and Dirichlet to the recent ones of Gras, Vehara, and others. Audience: This book is aimed at graduate students and researchers interested in (analytic) number theory, functions of a complex variable and special functions.
Synopsis
In Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2- . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol ( ) has the value + 1 or -1. Expanding this product gives eld e: =l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o
Table of Contents
Preface.
I. Short Character Sums.
II. Class Number Congruences.
III. Congruences Between the Orders of
K^{2}-Groups.
IV. Congruences among the Values of 2-Adic
L-Functions.
V. Applications of Zagier's Formula (I).
VI. Applications of Zagier's Formula (II). Bibliography. Author Index. Subject Index. List of symbols.