Synopses & Reviews
Topology is one of the most rapidly expanding areas of mathematical thought: while its roots are in geometry and analysis, topology now serves as a powerful tool in almost every sphere of mathematical study. This book is intended as a first text in topology, accessible to readers with at least three semesters of a calculus and analytic geometry sequence.
In addition to superb coverage of the fundamentals of metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, and other essentials, Elementary Topology gives added perspective as the author demonstrates how abstract topological notions developed from classical mathematics. For this second edition, numerous exercises have been added as well as a section dealing with paracompactness and complete regularity. The Appendix on infinite products has been extended to include the general Tychonoff theorem; a proof of the Tychonoff theorem which does not depend on the theory of convergence has also been added in Chapter 7.
Synopsis
Superb introduction to metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, other essentials. Numerous exercises, plus section on paracompactness and complete regularity. References. Includes 107 illustrations.
Synopsis
Superb introduction to metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, other essentials. Numerous exercises, plus section on paracompactness and complete regularity. References. Includes 107 illustrations.