Synopses & Reviews
Synopsis
The core of this book, Chapters 3 through 5, presents a course on metric, normed, andHilbertspacesatthesenior/graduatelevel. Themotivationfor each of these chapters is the generalisation of a particular attribute of the n Euclidean spaceR: in Chapter 3, that attribute isdistance; in Chapter 4, length; and in Chapter 5, inner product. In addition to the standard topics that, arguably, should form part of the armoury of any graduate student in mathematics, physics, mathematical economics, theoretical statistics, . . ., this part of the book contains many results and exercises that are seldom found in texts on analysis at this level. Examples of the latter are Wong s Theorem(3. 3. 12)showingthattheLebesguecoveringpropertyisequivalent to the uniform continuity property, and Motzkin s result (5. 2. 2) that a nonempty closed subset of Euclidean space has the unique closest point property if and only if it is convex. The sad reality today is that, perceiving them as one of the harder parts oftheirmathematicalstudies, studentscontrivetoavoidanalysiscoursesat almost any cost, in particular that of their own educational and technical deprivation. Many universities have at times capitulated to the negative demand of students for analysis courses and have seriously watered down their expectations of students in that area. As a result, mathematics - jors are graduating, sometimes with high honours, with little exposure to anything but a rudimentary course or two on real and complex analysis, often without even an introduction to the Lebesgue integral."
Synopsis
A complete course on metric, normed, and Hilbert spaces, including many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format, including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. The book begins with a fast-paced course on real analysis, followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as a preparation for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and unusual applications. Of special interest are the 750 exercises, many with guidelines for their solutions, applications and extensions of the main propositions and theorems, pointers to new branches of the subject, and difficult challenges for the very best students.