Synopses & Reviews
This book offers a systematic presentation of a variety of methods and results concerning integrable systems of classical mechanics. The investigation of integrable systems was an important line of study in the last century, but up until recently only a small number of examples with two or more degrees of freedom were known. In the last fifteen years however, remarkable progress has been made in this field via the so-called isospectral deformation method which makes extensive use of group-theoretical concepts. The book focuses mainly on the development and applications of this new method, and also gives a fairly complete survey of the older classic results. Chapter 1 contains the necessary background material and outlines the isospectral deformation method in a Lie-algebraic form. Chapter 2 gives an account of numerous previously known integrable systems. Chapter 3 deals with many-body systems of generalized Calogero-Moser type, related to root systems of simple Lie algebras. Chapter 4 is devoted to the Toda lattice and its various modifications seen from the group-theoretic point of view. Chapter 5 investigates some additional topics related to many-body systems. The book will be valuable to students as well as researchers.
Synopsis
This book is designed to expose from a general and universal standpoint a variety ofmethods and results concerning integrable systems ofclassical me- chanics. By such systems we mean Hamiltonian systems with a finite number of degrees of freedom possessing sufficiently many conserved quantities (in- tegrals ofmotion) so that in principle integration ofthe correspondingequa- tions of motion can be reduced to quadratures, i.e. to evaluating integrals of known functions. The investigation of these systems was an important line ofstudy in the last century which, among other things, stimulated the appearance of the theory ofLie groups. Early in our century, however, the work ofH. Poincare made it clear that global integrals of motion for Hamiltonian systems exist only in exceptional cases, and the interest in integrable systems declined. Until recently, only a small number ofsuch systems with two or more de- grees of freedom were known. In the last fifteen years, however, remarkable progress has been made in this direction due to the invention by Gardner, Greene, Kruskal, and Miura GGKM 19671 ofa new approach to the integra- tion ofnonlinear evolution equations known as the inverse scattering method or the method of isospectral deformations. Applied to problems of mechanics this method revealed the complete in- tegrability of numerous classical systems. It should be pointed out that all systems of this kind discovered so far are related to Lie algebras, although often this relationship is not sosimpleas the oneexpressed by the well-known theorem of E. Noether.