Synopses & Reviews
"This is an innovative book... Well-constructed computer exercises with a bundled easily useable software package 'Mathematica Uncertain Virtual Worlds'... The bibliographical notes that accompany each chapter...are clearly written with a keen eye toward encouraging students to enrich their understanding by pursuing additional reading... A lucidly written text and many well-designed computer experiments that enable students to simulate the whole process of some dynamic systems." - Technometrics Introductory Statistics and Random Phenomena integrates traditional statistical data analysis with new computational experimentation capabilities and concepts of algorithmic complexity and chaotic behavior in nonlinear dynamic systems. This is the first advanced text/reference to bring together such a comprehensive variety of tools for the study of random phenomena occurring in engineering and the natural, life, and social sciences. The crucial computer experiments are conducted using the readily available computer program Mathematica(r) Uncertain Virtual Worlds(r) software packages which optimize and facilitate the simulation environment. Brief tutorials are included that explain how to use the Mathematica(r) programs for effective simulation and computer experiments. Large and original real-life data sets are introduced and analyzed as a model for independent study. This is an excellent classroom tool and self-study guide. The material is presented in a clear and accessible style providing numerous exercises and bibliographical notes suggesting further reading. Topics and Features: Comprehensive and integrated treatment of uncertainty arising in engineering and scientific phenomena -- algorithmic complexity, statistical independence, and nonlinear chaotic behavior Extensive exercise sets, examples, and Mathematica computer experiments that reinforce concepts and algorithmic methods Thorough presentation of methods of data compression and representation Algorithmic approach to model selection and design of experiments Large data sets and 13 Mathematica(r)-based Uncertain Virtual Worlds(r) programs and code available
Synopsis
The present book is based on a course developed as partofthe large NSF-funded GatewayCoalitionInitiativeinEngineeringEducationwhichincludedCaseWest- ern Reserve University, Columbia University, Cooper Union, Drexel University, Florida International University, New Jersey Institute ofTechnology, Ohio State University, University ofPennsylvania, Polytechnic University, and Universityof South Carolina. The Coalition aimed to restructure the engineering curriculum by incorporating the latest technological innovations and tried to attract more and betterstudents to engineering and science. Draftsofthis textbookhave been used since 1992instatisticscoursestaughtatCWRU, IndianaUniversity, Bloomington, and at the universities in Gottingen, Germany, and Grenoble, France. Another purpose of this project was to develop a courseware that would take advantage ofthe Electronic Learning Environment created by CWRUnet-the all fiber-optic Case Western Reserve University computer network, and its ability to let students run Mathematica experiments and projects in their dormitory rooms, and interactpaperlessly with the instructor. Theoretically, onecould try togothroughthisbook withoutdoing Mathematica experimentsonthecomputer, butitwouldbelikeplayingChopin's Piano Concerto in E-minor, or Pink Floyd's The Wall, on an accordion. One would get an idea ofwhatthe tune was without everexperiencing the full richness andpowerofthe entire composition, and the whole ambience would be miscued.
Table of Contents
Table of Contents:||I DESCRIPTIVE STATISTICS-COMPRESSING DATA||1. Why One Needs to Analyze Data?||1.1 Coin Tossing, lottery, and the stock market||1.2 Inventory problems in management||1.3 Battery life and quality control in manufacturing||1.4 Reliability of complex systems||1.5 Point processes in time and space||1.6 Polls-social sciences||1.7 Time series||1.8 Repeated experiments and testing||1.9 Simple chaotic dynamical systems||1.10 Complex dynamical systems||1.11 Pseudorandom number generators and the Monte-Carlo methods||1.12 Fractals and image reconstruction||1.13 Coding and decoding, unbreakable ciphers||1.14 Experiments, exercises, and projects||1.15 Bibliographical notes||2. Data Representation and Compression||2.1 Data types, categorical data||2.2 Numerical data: order statistics, median, quantiles||2.3 Numerical data: histograms, means, moments||2.4 Location, dispersion, and shape parameters||2.5 Probabilities: a frequentist viewpoint||2.6 Multidimensional data: histograms and other graphical representations||2.7 2-D data: regression and correlations||2.8 Fractal data||2.9 Measuring information content: entropy||2.10 Experiments, exercises, and projects||2.11 Bibliographical notes||3. Analytic Representation of Random Experimental Data||3.1 Repeated experiments and the law of large numbers||3.2 Characteristics of experiments: distributions functions, densities, means, variances||3.3 Uniform distributions, simulation of random quantities, the Monte Carlo method||3.4 Bernoulli and binomial distributions||3.5 Rescaling probabilities: Poisson approximation||3.6 Stability of Fluctuations Law: Gaussian approximation||3.7 How to estimate p in Bernoulli experiments||3.8 Other continuous distributions; Gamma function calculus||3.9 Testing the fit of a distribution||3.10 Random vectors and multivariate distributions||3.11 Experiments, exercises, and projects||3.12 Bibliographical notes||II MODELING UNCERTAINTY||4. Algorithmic Complexity and Random Strings||4.1 Heart of randomness: when is random - random?||4.2 Computable strings and the Turing machine||4.3 Kolmogorov complexity and random strings||4.4 Typical sequences: Martin-Lof tests of randomness||4.5 Stability of subsequences: von Mises randomness||4.6 Computable framework of randomness: degrees of irregularity||4.7 Experiments, exercises, and projects||4.8 Bibliographical notes||5. Statistical Independence and Kolmogorov's Probability Theory||5.1 Description of experiments, random variables, and Kolmogorov's Axioms||5.2 Uniform discrete distributions and counting||5.3 Statistical independence as a model for repeated experiments||5.4 Expectations and other characteristics of random variables||5.4.1 Expectations||5.4.2 Expectations of functions of random variables. Variance||5.4.3 Expectations of functions of vectors. Covariance||5.4.4 Expectations of the product. Variance of the sum of independent random variables||5.4.5 Moments and the moment generating function||5.4.6 Expectations of general random variables||5.5 Averages of independent random variables||5.6 Laws of large numbers and small deviations||5.7 Central limit theorem and large deviations||5.8 Experiments, exercises, and projects||5.9 Bibliographical notes||6. Chaos in Dynamical Systems: How Uncertainty Arises in Scientific and Engineering Phenomena||6.1 Dynamical systems: general concepts and typical examples||6.2 Orbits and fixed points||6.3 Stability of frequencies and the ergodic theorem||6.4 Stability of fluctuations and the central limit theorem||6.5 Attractors, fractals, and entropy||6.6 Experiments, exercises, and projects||6.7 Bibliographical notes||III MODEL SPECIFICATION-DESIGN OF EXPERIMENTS||7. General Principles of Statistical Analysis||7.1 Design of experiments and planning of investigation||7.2 Model selection||7.3 Determining the method of statistical inference||7.3.1 Maximum likelihood estimator (MLE)||7.3.2 Least squares estimator (LSE)||7.3.3 Method of moments (MM)||7.3.4 Concluding remarks||7.4 Estimation of fractal dimension||7.5 Practical side of data collection and analysis||7.6 Experiments, exercises, and projects||7.7 Bibliographical notes||8. Statistical Inference for Normal Populations||8.1 Introduction; parametric inference||8.2 Confidence intervals for one-sample model||8.3 From confidence intervals to hypothesis testing||8.4 Statistical inference for two-sample normal models||8.5 Regression analysis for the normal model||8.6 Testing for goodness-of-fit||8.7 Bibliographical notes||9. Analysis of Variance||9.1 Single-factor ANOVA||9.2 Two-factor ANOVA||9.3 Experiments, exercises, and projects||9.4 Bibliographical notes||A. Uncertainty Principle in Signal Processing and Quantum Mechanics||B. Fuzzy Systems and Logic||C. A Critique of Pure Reason||D. The Remarkable Bernoulli Family||E. Uncertain Virtual Worlds Mathematica Packages||F. Tables