Synopses & Reviews
Mathematics Mechanization and Applications provides a uniform presentation of major developments, carried out mostly in Wu's extended Chinese group, on algorithms and software tools for mechanizing algebraic equations solving and geometric theorem proving together with their applications to problems in science and engineering. It is distinguished by its uniform presentation with all-Chinese contributors and a 40-page list of references. There are 20 chapters written by experienced researchers. The book is divided into four parts: polynomial system solving, automated geometric reasoning, algebraic computation, and implementations and applications. Each chapter is devoted to surveying and expounding the main results achieved from one selected subject. The book contains surveys for diverse applications of the theories and methods to real world problems, ranging from the analysis of robotics and mechanisms to nonlinear programming and chemical equilibrium computation. Part of the theoretical and practical work reviewed in the book has been either unpublished or published only in Chinese journals or even only in the Chinese language. This book therefore provides Western readers working in symbolic and algebraic computation, geometric reasoning and modeling, algorithmic mathematics, robotics, CAGD, and other relevant areas with an easily accessible source of references for what the Chinese researchers have been doing under the banner of mathematics mechanization.
* Addresses the frontiers of research with original ideas and results
* Includes sophisticated, successful applications to scientific and engineering problems
* Covers polynomial system solving, geometric reasoning, computer algebra, and mathematical software
* Is comprehensive and focused
* Contains an extensive bibliography--of high reference value--particularly for western readers
Review
he book is an indispensable reference to the workers actively engaged in symbolic computation, be it in mathematics, robotics, CAD, computer vision, non-linear optimization, theoretic physics, chemical equilibrium, celestial mechanics. It can also be strongly recommended to the``disengaged" mathematician who wishes to become familiar with an important and active research area."
Zentralblatt MATH - the journal of the European Mathmatical Society.
Review
inear optimization, theoretic physics, chemical equilibrium, celestial mechanics. It can also be strongly recommended to the``disengaged" mathematician who wishes to become familiar with an important and active research area."
Zentralblatt MATH - the journal of the European Mathmatical Society.
Review
"An outstanding feature of the book is the great variety and diversity of
the material treated, together with the brevity, lucidity, and simplicity with which the leading ideas are presented. Another distinct, very appealing feature is the brief comparison of the philosophical ideas underlying the approaches undertaken by ancient Greek mathematicians and their contemporary Chinese pairs. The book is an indispensable reference to the workers actively engaged in symbolic computation, be it in mathematics, robotics, CAD, computer vision, non-linear optimization, theoretic physics, chemical equilibrium, celestial mechanics. It can also be strongly recommended to the``disengaged" mathematician who wishes to become familiar with an important and active research area."
Zentralblatt MATH - the journal of the European Mathmatical Society.
Synopsis
Mathematics Mechanization and Applications provides a uniform presentation of major developments, carried out mostly in Wu's extended Chinese group, on algorithms and software tools for mechanizing algebraic equations solving and geometric theorem proving together with their applications to problems in science and engineering. It is distinguished by its uniform presentation with all-Chinese contributors and a 40-page list of references. There are 20 chapters written by experienced researchers. The book is divided into four parts: polynomial system solving, automated geometric reasoning, algebraic computation, and implementations and applications. Each chapter is devoted to surveying and expounding the main results achieved from one selected subject. The book contains surveys for diverse applications of the theories and methods to real world problems, ranging from the analysis of robotics and mechanisms to nonlinear programming and chemical equilibrium computation. Part of the theoretical and practical work reviewed in the book has been either unpublished or published only in Chinese journals or even only in the Chinese language. This book therefore provides Western readers working in symbolic and algebraic computation, geometric reasoning and modeling, algorithmic mathematics, robotics, CAGD, and other relevant areas with an easily accessible source of references for what the Chinese researchers have been doing under the banner of mathematics mechanization.
* Addresses the frontiers of research with original ideas and results
* Includes sophisticated, successful applications to scientific and engineering problems
* Covers polynomial system solving, geometric reasoning, computer algebra, and mathematical software
* Is comprehensive and focused
* Contains an extensive bibliography--of high reference value--particularly for western readers
Synopsis
Mathematics Mechanization and Applications provides a uniform presentation of major developments, carried out mostly in Wu's extended Chinese group, on algorithms and software tools for mechanizing algebraic equations solving and geometric theorem proving together with their applications to problems in science and engineering. It is distinguished by its uniform presentation with all-Chinese contributors and a 40-page list of references. There are 20 chapters written by experienced researchers. The book is divided into four parts: polynomial system solving, automated geometric reasoning, algebraic computation, and implementations and applications. Each chapter is devoted to surveying and expounding the main results achieved from one selected subject. The book contains surveys for diverse applications of the theories and methods to real world problems, ranging from the analysis of robotics and mechanisms to nonlinear programming and chemical equilibrium computation. Part of the theoretical and practical work reviewed in the book has been either unpublished or published only in Chinese journals or even only in the Chinese language. This book therefore provides Western readers working in symbolic and algebraic computation, geometric reasoning and modeling, algorithmic mathematics, robotics, CAGD, and other relevant areas with an easily accessible source of references for what the Chinese researchers have been doing under the banner of mathematics mechanization.
* Addresses the frontiers of research with original ideas and results
* Includes sophisticated, successful applications to scientific and engineering problems
* Covers polynomial system solving, geometric reasoning, computer algebra, and mathematical software
* Is comprehensive and focused
* Contains an extensive bibliography--of high reference value--particularly for western readers
Synopsis
Mathematics Mechanization and Applications provides surveys for major research developments on mechanizing algebraic equations-solving and geometric theorem proving with diverse applications accomplished in Wu's extended Chinese group.
The book:
* addresses the frontiers of research, with new and original ideas and results
* includes sophisticated and successful applications to scientific and engineering problems
* covers polynomial system solving; geometric reasoning; computer algebra; and mathematical software
* is comprehensive and focused, and easy to read with a uniform presentation
* contains an extensive bibliography, of high value for reference to western readers.
This book is of interest to researchers, software developers and graduate students in symbolic and algebraic computation, automated theorem-proving, algorithmic mathematics, and computer-aided mathematical problem solving. It is relevant for researchers and university teachers in computer-aided instruction and education; and for engineers and practitioners in mechanics, computer-aided geometric design, geometric
modelling and robotics. People in many other related areas, from pure mathematics to computer-aided design, particularly those who know of the Wu method, but have little knowledge of it or the work that has arisen around it, will also find the book good reading.
About the Author
Dongming Wang has been a senior researcher at CNRS since 1992. He is recognized for his work and expertise on automated geometric reasoning, elimination methods, and applications of symbolic computation to differential equations and neural networks.Xiao-Shan Gao received his Ph.D. from Academia Sinica in 1988 and worked as a research scientist at the University of Texas at austin from 1988 to 1990, and at Wichita State University from 1992 to 1996. He has been a research professor at Academia Sinica since 1997. His major research interests include automated geometric reasoning, polynomial system and geometric constraint solving, and intelligent computer-aided design and instruction.
Institute of Systems Science, Academica Sinica, China
Table of Contents
Preface. List of Contributors.
Polynomial System Solving:
W. Wu, The Characteristic Set Method and Its Application.
D. Wang, Some Algorithms for Zero Decomposition of Polynomial Systems.
S. Zhang, G. Feng, The Eigenvalue Approach to Polynomial System.
S.Wang, K. Wu, Solving the Yang-Baxter Equation by Wu's Method.
Automated Geometric Reasoning:
S. Chou, D. Lin, Wu's Method for Automated Geometry Theorem Proving and Discovering.
H. Li, Mechanical Theorem Proving in Differential Geometry.
J. Zhang, Points Elimination Methods for Geometric Problem Solving.
H. Li, Clifford Algebra Approaches to Mechanical Geometry Theorem Proving.
X. Hou, Proving by Examples.
X. Gao, Search Methods Revisited.
J. Wu, First-Order Polynomial Based Theorem Proving.
Algebraic Computation:
Z. Li, Greatest Common Right Divisors, Least Common Left Multiples, and Subresultants of Ore Polynomials.
L. Zhi, Algebraic Factorization and GCD Computation.
X. Gao, Conversion Between Implicit and Parametric Representations of Algebraic Varieties.
Implementations and Applications:
Z. Lu, S. Ma, Centers, Foci, and Limit Cycles for Polynomial Differential Systems.
Z. Li, Exact Solitary Wave Solutions of Non-linear Evolution Equations.
H. Zhang, E. Fan, Applications of Mechanical Methods to Partial Differential Equations.
Q. Liao, Equation Solving in Robotics and Mechanisms.
G. Feng, H. Ren, Y. Zhou, Blending Several Implicit Algebraic Surfaces.
S. Chou, X. Gao, Z. Liu, D-K Wang, D. Wang, Geometric Theorem Provers and Algebraic Equation Solvers. References. Index.