Synopses & Reviews
This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.
Synopsis
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Table of Contents
Introduction.- Characteristics of Time Series.- ARMA Modeling and Forecasting.- Parametric Nonlinear Time Series Models.- Nonparametric Density Estimation.- Smoothing in Time Series.- Spectral Density Estimation and Its Applications.- Nonparametric Models.- Model Validation.- Nonlinear Prediction.