Synopses & Reviews
This book presents a comprehensive development of effective numerical methods for stochastic control problems in continuous time. The process models are diffusions, jump-diffusions, or reflected diffusions of the type that occur in the majority of current applications. All the usual problem formulations are included, as well as those of more recent interest such as ergodic control, singular control and the types of reflected diffusions used as models of queuing networks. Applications to complex deterministic problems are illustrated via application to a large class of problems from the calculus of variations. The general approach is known as the Markov Chain Approximation Method. The required background to stochastic processes is surveyed, there is an extensive development of methods of approximation, and a chapter is devoted to computational techniques. The book is written on two levels, that of practice (algorithms and applications) and that of the mathematical development. Thus the methods and use should be broadly accessible. This update to the first edition will include added material on the control of the 'jump term' and the 'diffusion term.' There will be additional material on the deterministic problems, solving the Hamilton-Jacobi equations, for which the authors' methods are still among the most useful for many classes of problems. All of these topics are of great and growing current interest.
Review
"The second edition of this acclaimed book from Springer-Verlag has the latest theoretical and practical information on solving stochastic control problems. Including proofs and algorithms using diffusion, jump-diffusion, and other process models, the authors help make randomness a little less scary." Amazon.com Delivers Mathematics and Statistics e-bulletin, July 2001
Synopsis
Changes in the second edition. The second edition differs from the first in that there is a full development of problems where the variance of the diffusion term and the jump distribution can be controlled. Also, a great deal of new material concerning deterministic problems has been added, including very efficient algorithms for a class of problems of wide current interest. This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new problem formulations and sometimes surprising applications appear regu larly. We have chosen forms of the models which cover the great bulk of the formulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types."
Synopsis
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
Table of Contents
Review of Continuous Time Models.- Controlled Markov Chains.- Dynamic Programming Equations.- Markov Chain Approximation Method.- The Approximating Markov Chains.- Computational Methods.- The Ergodic Cost Problem.- Heavy Traffic and Singular Control.- Weak Convergence and the Characterization of Processes.- Convergence Proofs.- Convergence Proofs Continued.- Finite Time and Filtering Problems.- Controlled Variance and Jumps.- Problems from the Calculus of Variations: Finite Time Horizon.- Problems from the Calculus of Variations: Infinite Time Horizon.- The Viscosity Solution Approach.