Synopses & Reviews
This self-contained text offers an elementary introduction to partial differential equations (pdes), primarily focusing on linear equations, but also providing some perspective on nonlinear equations. The classical treatment is mathematically rigorous with a generally theoretical layout, though indications to some of the physical origins of pdes are made throughout in references to potential theory, similarity solutions for the porous medium equation, generalized Riemann problems, and others. The material begins with a focus on the Cauchy-Kowalewski theorem, discussing the notion of characteristic surfaces to classify pdes. Next, the Laplace equation and connected elliptic theory are treated, as well as integral equations and solutions to eigenvalue problems. The heat equation and related parabolic theory are then presented, followed by the wave equation in its basic aspects. An introduction to conservation laws, the uniqueness theorem, viscosity solutions, ill-posed problems, and nonlinear equations of first order round out the key subject matter. Large parts of this revised second edition have been streamlined and rewritten to incorporate years of classroom feedback, correct errors, and improve clarity. Most of the necessary background material has been incorporated into the complements and certain nonessential topics have been given reduced attention (noticeably, numerical methods) to improve the flow of presentation. The exposition is replete with examples, problems and solutions that complement the material to enhance understanding and solidify comprehension. The only prerequisites are advanced differential calculus and some basic Lp theory. The work can serve as a text for advanced undergraduates and graduate students in mathematics, physics, engineering, and the natural sciences, as well as an excellent reference for applied mathematicians and mathematical physicists. From Reviews of the First Edition: "The author's intent is to present an elementary introduction to pdes... In contrast to other elementary textbooks on pdes...much more material is presented on the three basic equations: Laplace's equation, the heat and wave equations...The presentation is clear and well organized...The text is complemented by numerous exercises and hints to proofs." -Mathematical Reviews "This is a well-written, self-contained, elementary introduction to linear, partial differential equations." -ZentrallblattMATH "This book certainly can be recommended as an introduction to PDEs in mathematical faculties and technical universities." -Applications of Mathematics
Review
From Reviews of the First Edition: "This is a well-written, self-contained, elementary introduction to linear, partial differential equations." --ZentrallblattMATH "The author's intent is to present an elementary introduction to pdes... In contrast to other elementary textbooks on pdes...much more material is presented on the three basic equations: Laplace's equation, the heat and wave equations...The presentation is clear and well organized...The text is complemented by numerous exercises and hints to proofs." --Mathematical Reviews "This book certainly can be recommended as an introduction to PDEs in mathematical faculties and technical universities." --Applications of Mathematics
Review
"The book under review, the second edition of Emmanuele DiBenedetto's 1995 Partial Differential Equations, now appearing in Birkhäuser's 'Cornerstones' series, is an example of excellent timing.
Synopsis
This is a revised and extended version of my 1995 elementary introduction to partial di?erential equations. The material is essentially the same except for three new chapters. The ?rst (Chapter 8) is about non-linear equations of ?rst order and in particular Hamilton Jacobi equations. It builds on the continuing idea that PDEs, although a branch of mathematical analysis, are closely related to models of physical phenomena. Such underlying physics in turn provides ideas of solvability. The Hopf variational approach to the Cauchy problem for Hamilton Jacobi equations is one of the clearest and most incisive examples of such an interplay. The method is a perfect blend of classical mechanics, through the role and properties of the Lagrangian and Hamiltonian, and calculus of variations. A delicate issue is that of identifying uniqueness classes. An e?ort has been made to extract the geometrical conditions on the graph of solutions, such as quasi-concavity, for uniqueness to hold. Chapter 9 is an introduction to weak formulations, Sobolev spaces, and direct variationalmethods for linear and quasi-linearelliptic equations. While terse, the material on Sobolev spaces is reasonably complete, at least for a PDEuser. Itincludesallthebasicembeddingtheorems, includingtheirproofs, and the theory of traces. Weak formulations of the Dirichlet and Neumann problems build on this material. Related variational and Galerkin methods, as well as eigenvalue problems, are presented within their weak framework."
Synopsis
This book offers a self-contained introduction to partial differential equations (PDEs). The Second Edition is rewritten to incorporate years of classroom feedback, to correct errors and to improve clarity. The exposition offers many examples, problems and solutions to enhance understanding.
Synopsis
This book offers a self-contained introduction to partial differential equations (PDEs), primarily focusing on linear equations, and also providing perspective on nonlinear equations. The treatment is mathematically rigorous with a generally theoretical layout, with indications to some of the physical origins of PDEs. The Second Edition is rewritten to incorporate years of classroom feedback, to correct errors and to improve clarity. The exposition offers many examples, problems and solutions to enhance understanding. Requiring only advanced differential calculus and some basic Lp theory, the book will appeal to advanced undergraduates and graduate students, and to applied mathematicians and mathematical physicists.
Synopsis
This self-contained textbook offers an elementary introduction to partial differential equations (PDEs), primarily focusing on linear equations, but also providing a perspective on nonlinear equations, through Hamilton--Jacobi equations, elliptic equations with measurable coefficients and DeGiorgi classes. The exposition is complemented by examples, problems, and solutions that enhance understanding and explore related directions. Large parts of this revised second edition have been streamlined and rewritten to incorporate years of classroom feedback, correct misprints, and improve clarity. The work can serve as a text for advanced undergraduates and graduate students in mathematics, physics, engineering, and the natural sciences, as well as an excellent reference for applied mathematicians and mathematical physicists. The newly added three last chapters, on first order non-linear PDEs (Chapter 8), quasilinear elliptic equations with measurable coefficients (Chapter 9) and DeGiorgi classes (Chapter 10), point to issues and directions at the forefront of current investigations. Reviews of the first edition: The author's intent is to present an elementary introduction to PDEs... In contrast to other elementary textbooks on PDEs . . . much more material is presented on the three basic equations: Laplace's equation, the heat and wave equations. . . . The presentation is clear and well organized. . . . The text is complemented by numerous exercises and hints to proofs. ---Mathematical Reviews This is a well-written, self-contained, elementary introduction to linear, partial differential equations. ---Zentralblatt MATH
Table of Contents
Preface to the Second Edition.- Preface to the First Edition.- Preliminaries.- Quasi-Linear Equations.- The LaPlace Equation.- Boundary Value Problems by Double Layer Potentials.- Integral Equations and Eigenvalue Problems.- The Heat Equation.- The Wave Equation.- Quasi-Linear Equations of First Order.- Non-Linear Equations of First Order.- References.- Index.