Synopses & Reviews
The new edition of Glover and Sarma's highly-respected text provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Like earlier editions of the book, physical concepts are highlighted while also giving necessary attention to math-ematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. Beginning in Ch. 3, students are introduced to new concepts critical to analyzing power systems, including coverage of both balanced and unbalanced operating conditions. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field. Each book now contains a CD with Power World software. This package is commonly used in industry and will enable students to analyze and simulate power systems. The authors use the software to extend, rather than replace, the fully worked examples provided in previous editions. In the new edition, each Power World Simulator example includes a fully worked hand solution of the problem along with a Power World Simulator case (except when the problem size makes it impractical). The new edition also contains updated case studies on recent trends in the Power Systems field, including coverage of deregulation, increased power demand, economics, and alternative sources of energy. These case studies are derived from real life situations.
Synopsis
The third edition of this text gives undergraduate students a complete understanding of the basic theory of systems analysis and design. It uses case studies, examples and problems to teach physical concepts with supporting mathematical techniques.
Synopsis
The new edition of Power Systems Analysis and Design text provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Physical concepts are highlighted while also giving necessary attention to mathematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field.
About the Author
A PhD from MIT, J. Duncan Glover is President and Principal Engineer at Failure Electrical, LLC. Prior to forming Failure Electrical, LLC, Dr. Glover was a Principal Engineer at Exponent Failure Analysis Associates, a tenured Associate Professor in the Electrical and Computer Engineering Department of Northeastern University, and held several engineering positions with companies that include the International Engineering Company, Commonwealth Associates, Inc., and American Electric Power Service Corporation. Dr. Glover specializes in issues pertaining to electrical engineering, particularly as they relate to failure analysis of electrical systems, subsystems, and components, including causes of electrical fires. His expertise covers electric power systems, generation, transmission, distribution, power system planning, extra high voltage design, power system dynamics assessment, and computer-aided design. Dr. Glover is experienced in analyzing such elements as control systems, power electronics, motor drives, inverters, rectifiers, rotating electric machinery, switchgear, and transformers, as well as residential and commercial appliances. Mulukutla S. Sarma is the author of numerous technical articles published in leading journals, including the first studies of methods for computer-aided analysis of three-dimensional nonlinear electromagnetic field problems as applied to the design of electrical machinery. Sarma is a Life-Fellow of IEEE(USA), a Fellow of IEE(UK) and IEE(INDIA), and a reviewer of several IEEE Transactions, a member of the IEEE Rotating Machinery Committee, and a member of several other professional societies. Dr. Sarma is a Professional Engineer of the State of Massachusetts.
Table of Contents
1. Introduction Case Study: The Future Beckons / History of Electric Power Systems / Present and Future Trends / Electric Utility Industry Structure / Computers in Power System Engineering / PowerWorld Simulator 2. Fundamentals Case Study: Distributed Generation - Semantic Hype or the Dawn of a New Era / Phasors / Instantaneous Power in Single-Phase ac Circuits / Complex Power / Network Equations / Balanced Three-Phase Circuits / Power in Balanced Three-Phase Circuits / Advantages of Balanced Three-Phase vs. Single-Phase Systems 3. Power Transformers Case Study: Life Extension and Condition Assessment / The Ideal Transformer / Equivalent Circuits for Practical Transformers / The Per-Unit System / Three-Phase Transformer Connections and Phase Shift / Per-Unit Equivalent Circuits of Balanced Three-Phase Two-Winding Transformers / Three-Winding Transformers / Autotransformers / Transformers with Off-Nominal Turns Ratios 4. Transmission-Line Parameters Case Study: Transmission Line Conductor Design Comes of Age / Case Study: Mammoth 765-kV Project / Transmission Line Design Considerations / Resistance / Conductance / Inductance: Solid Cylindrical Conductor / Inductance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing / Inductance: Composite Conductors, Unequal Phase Spacing, Bundled Conductors / Series Impedances: Three-Phase Line with Neutral Conductors and Earth Return / Electric Field and Voltage: Solid Cylindrical Conductor / Capacitance: Single-Phase Two Wire Line and Three-Phase Three-Wire Line with Equal Phase Spacing . Capacitance: Stranded Conductors, Unequal Phase Spacing, Bundled Conductors / Shunt Admittances: Lines with Neutral Conductors and Earth Return / Electric Field Strength at Conductor Surfaces and at Ground Level / Parallel Circuit Three-Phase Lines 5. Transmission Lines: Steady-State Operation Case Study: The FACTS on Resolving Transmission Gridlock / Medium and Short Line Approximations / Transmission-Line Differential Equations / Equivalent ? Circuit / Lossless Lines / Maximum Power Flow / Line Loadability / Reactive Compensation Techniques 6. Power Flows Case Study: Visualizing the Electric Grid / Direct Solutions to Linear Algebraic Equations: Gauss Elimination / Iterative Solutions to Linear Algebraic Equations: Jacobi and Gauss-Seidel / Iterative Solutions to nonlinear Algebraic Equations: Newton-Raphson / The Power-Flow Problem / Power-Flow Solution by Gauss-Seidel / Power-Flow Solution by Newton-Raphson / Control of Power Flow / Sparsity Techniques / Fast Decoupled Power Flow / Design Projects 7. Symmetrical Faults Case Study: The Problem of Arcing Faults in Low-Voltage Power Distribution Systems / Series R-L Circuit Transients / Three-Phase Short Circuit - Unloaded Synchronous Machine / Power System Three-Phase Short Circuits / Bus Impedance Matrix / Circuit Breaker and Fuse Selection / Design Project 8. Symmetrical Components Definition of symmetrical Components / Sequence Networks of Impedance Loads / Sequence Networks of Series Impedances / Sequence Networks of Three-Phase Lines / Sequence Networks of Rotating Machines / Per-Unit Sequence Models of Three-Phase Two-Winding Transformers / Per-Unit Sequence Models of Three-Phase Three-Winding Transformers / Power in Sequence Networks 9. Unsymmetrical Faults Case Study: Fires at U.S. Utilities / System Representation / Single Line-to-Ground Fault / Line-to-Line Fault / Double Line-to-Ground Fault / Sequence Bus Impedance Matrices / Design Projects 10. System Protection Case Study: Blackouts and Relaying Considerations / System Protection Components / Instrument Transformers / Overcurrent Relays / Radial System Protection / Reclosers and Fuses / Directional Relays / Protection of Two-Source System with Directional Relays / Zones of Protection / Line Protection with Impedance (Distance) Relays / Differential relays / Bus Protection with Differential Relays / transformer Protection with Differential relays / Pilot Relaying / Digital Relaying 11. Power System Controls Case Study: Transmission System Planning: The Old World Meets the New / Case Study: Overcoming Restoration Challenges Associated with Major Power System Disturbances: Restoration from Cascading Failures / Generator-Voltage Control / Turbine-Governor Control / Load-Frequency Control / Economic Dispatch / Optimal Power Flow 12. Transmission Lines: Transient Operation Case Study: VariSTAR? Type AZE Surge Arresters / Case Study: WACS - Wide Area Stability and Voltage Control System: R&D Online Demonstration / Traveling Waves on Single-Phase Lossless Lines / Boundary Conditions for Single-Phase Lossless Lines / Bewley Lattice Diagram / Discrete-Time Models of Single-Phase Lossless Lines and Lumped RLC Elements / Lossy Lines / Multiconductor Lines / Power System Overvoltages / Insulation Coordination 13. Transient Stability Case Study: Causes of the 14 august Blackout / Case Study: Real-Time Dynamic Security Assessment: Fast Simulation and Modeling Applied to Emergency Outage Security of the Electric Grid / The Swing Equation / Simplified Synchronous Machine Model and System Equivalents / The Equal-Area Criterion / Numerical Integration of the Swing Equation / Multimachine Stability / Design Methods for Improving Transient Stability Appendix Index