Synopses & Reviews
The new, Third Edition of this successful text covers the basic theory of integration in a clear, well-organized manner. The authors present an imaginative and highly practical synthesis of the "Daniell method" and the measure theoretic approach. It is the ideal text for undergraduate and first-year graduate courses in real analysis.
This edition offers a new chapter on Hilbert Spaces and integrates over 150 new exercises. New and varied examples are included for each chapter. Students will be challenged by the more than 600 exercises. Topics are treated rigorously, illustrated by examples, and offer a clear connection between real and functional analysis.
This text can be used in combination with the authors' Problems in Real Analysis, 2nd Edition, also published by Academic Press, which offers complete solutions to all exercises in the Principles text.
Key Features:
* Gives a unique presentation of integration theory
* Over 150 new exercises integrated throughout the text
* Presents a new chapter on Hilbert Spaces
* Provides a rigorous introduction to measure theory
* Illustrated with new and varied examples in each chapter
* Introduces topological ideas in a friendly manner
* Offers a clear connection between real analysis and functional analysis
* Includes brief biographies of mathematicians
"All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student."
--J. Lorenz in Zentralblatt für Mathematik
"...a clear and precise treatment of the subject. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use."
--CASPAR GOFFMAN, Department of Mathematics, Purdue University
Review
There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use."
-CASPAR GOFFMAN, Department of Mathematics, Purdue University
Review
f measures and product measures in a graduate course in real analysis. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use."
-CASPAR GOFFMAN, Department of Mathematics, Purdue University
Review
"All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student."
-J. Lorenz in ZENTRALBLATT FUR MATEMATIK
"A clear and precise treatment of the subject. All details are given in the text...I used a portion of the book on extension of measures and product measures in a graduate course in real analysis. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use."
-CASPAR GOFFMAN, Department of Mathematics, Purdue University
Synopsis
With the success of its previous editions,
Principles of Real Analysis, Third Edition, continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis.
* Gives a unique presentation of integration theory
* Over 150 new exercises integrated throughout the text
* Presents a new chapter on Hilbert Spaces
* Provides a rigorous introduction to measure theory
* Illustrated with new and varied examples in each chapter
* Introduces topological ideas in a friendly manner
* Offers a clear connection between real analysis and functional analysis
* Includes brief biographies of mathematicians
Synopsis
With the success of its previous editions,
Principles of Real Analysis, Third Edition, continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis.
* Gives a unique presentation of integration theory
* Over 150 new exercises integrated throughout the text
* Presents a new chapter on Hilbert Spaces
* Provides a rigorous introduction to measure theory
* Illustrated with new and varied examples in eachchapter
* Introduces topological ideas in a friendly manner
* Offers a clear connection between real analysis and functional analysis
* Includes brief biographies of mathematicians
Synopsis
a new chapter on Hilbert Spaces
* Provides a rigorous introduction to measure theory
* Illustrated with new and varied examples in each chapter
* Introduces topological ideas in a friendly manner
* Offers a clear connection between real analysis and functional analysis
* Includes brief biographies of mathematicians
"All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student."
--J. Lorenz in Zentralblatt für Mathematik
"...a clear and precise treatment of the subject. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use."
--CASPAR GOFFMAN, Department of Mathematics, Purdue University
Synopsis
With the success of its previous editions, Principles of Real Analysis, Third Edition continues to introduce students to the fundamentals of the theory of measure and functional analysis. The authors have included a new chapter on Hilbert Spaces as well as integrated over 150 new exercises throughout. This Third Edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniel Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises in the book. Topics are treated rigorously, illustrated by examples, offering a clear connection between real analysis and functional analysis.
Table of Contents
Fundamentals of Real Analysis
Topology and Continuity
The Theory of Measure
The Lebesgue Integral
Normed Spaces and Lp-Spaces
Hilbert Spaces
Special Topics in Integration
Bibliography