Synopses & Reviews
An in-depth look at real analysis and its applications-now expanded and revised.
This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory.
This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include:
* Revised material on the n-dimensional Lebesgue integral.
* An improved proof of Tychonoff's theorem.
* Expanded material on Fourier analysis.
* A newly written chapter devoted to distributions and differential equations.
* Updated material on Hausdorff dimension and fractal dimension.
Synopsis
This book covers the subject matter that is central to mathematical analysis: measure and integration theory, some point set topology, and rudiments of functional analysis. Also, a number of other topics are developed to illustrate the uses of this core material in important areas of mathematics and to introduce readers to more advanced techniques. Some of the material presented has never appeared outside of advanced monographs and research papers, or been readily available in comparative texts. About 460 exercises, at varying levels of difficulty, give readers practice in working with the ideas presented here.
About the Author
'GERALD B. FOLLAND is Professor of Mathematics at the University of Washington in Seattle. He has written extensively on mathematical analysis, including Fourier analysis, harmonic analysis, and differential equations.'
Table of Contents
Prologue.
Measures.
Integration.
Decomposition and Differentiation of Measures.
Point Set Topology.
Elements of Functional Analysis.
Lp Spaces.
Radon Measures.
Topics in Fourier Analysis.
Topics in Probability Theory.
More Measures and Integrals.
Bibliography.
Index.