Synopses & Reviews
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.
In this volume, the distinguished mathematician offers an exposition of set theory and the continuum hypothesis that employs intuitive explanations as well as detailed proofs. The self-contained treatment includes background material in logic and axiomatic set theory as well as an account of Kurt Gödel's proof of the consistency of the continuum hypothesis. An invaluable reference book for mathematicians and mathematical theorists, this text is suitable for graduate and postgraduate students and is rich with hints and ideas that will lead readers to further work in mathematical logic.
Synopsis
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The award-winning author employs intuitive explanations and detailed proofs in this self-contained treatment. 1966 edition. Copyright renewed 1994.
Synopsis
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The award-winning author employs intuitive explanations and detailed proofs in this self-contained treatment. 1966 edition. Copyright renewed 1994.
About the Author
A renowned mathematician, professor, and theorist, the late Paul J. Cohen won two of the most prestigious awards in mathematics: the American Mathematical Society's Bôcher Prize in 1964, for analysis; and the Fields Medal, the "Nobel Prize" of mathematics, in 1966, for logic.
Table of Contents
General Background in LogicZermelo-Fraenkel Set TheoryThe Consistsency of the Continuum Hypothesis and the Axiom of ChoiceThe Independence of the Continuum Hypothetis and the Axiom of ChoiceReferences