Synopses & Reviews
Designed and written by experienced and well-respected authors, this hands on, multi-media package provides a motivating introduction to fundamental concepts, specifically discrete-time systems. Unique features such as visual learning demonstrations, MATLAB laboratories and a bank of solved problems are just a few things that make this an essential learning tool for mastering fundamental concepts in today's electrical and computer engineering forum. Covers basic DSP concepts, integrated laboratory projects—related to music, sound and image processing. Other topics include new MATLAB functions for basic DSP operations, Sinusoids, Spectrum Representation, Sampling and Aliasing, FIR Filters, Frequency Response of FIR Filters, z-Transforms, IIR Filters, and Spectrum Analysis. Useful as a self-teaching tool for anyone eager to discover more about DSP applications, multi-media signals, and MATLAB.
Synopsis
This best-selling, hands-on, multimedia package provides an introduction to fundamental concepts, specifically discrete-time systems, for beginning engineering students. Created and written by the same well-respected authors, it has been adopted in over 100 institutions worldwide since publication. This class-tested learning package is also widely used as a self-teaching tool to discover more about USP applications, multimedia signals, and MATLAB^{®}. Unique features such as visual learning demonstrations, MATLAB laboratories, and a bank of solved homework problems are just a few of the things that make this an essential learning tool for mastering fundamental concepts in today's electrical and computer engineering curricula.
Table of Contents
1. Introduction.
Mathematical Representation of Signals. Mathematical Representation of Systems. Thinking about Systems.
2. Sinusoids.
Tuning Fork Experiment. Review of Sine and Cosine Functions. Sinusoidal Signals. Sampling and Plotting Sinusoids. Complex Exponentials and Phasors. Phasor Addition. Physics of the Tuning Fork. Time Signals: More Than Formulas.
3. Spectrum Representation.
The Spectrum of a Sum of Sinusoids. Beat Notes. Periodic Waveforms. More Periodic Signals. Fourier Series Analysis and Synthesis. Time-Frequency Spectrum. Frequency Modulation: Chirp Signals.
4. Sampling and Aliasing.
Sampling. Spectrum View of Sampling and Reconstruction. Strobe Demonstration. Discrete-to-Continuous Conversion. The Sampling Theorem.
5. FIR Filters.
Discrete-Time Systems. The Running Average Filter. The General FIR Filter. Implementation of FIR Filters. Linear Time-Invariant (LTI) Systems. Convolution and LTI Systems. Cascaded LTI Systems. Example of FIR Filtering.
6. Frequency Response of FIR Filters.
Sinusoidal Response of FIR Systems. Superposition and the Frequency Response. Steady State and Transient Response. Properties of the Frequency Response. Graphical Representation of the Frequency Response. Cascaded LTI Systems. Running-Average Filtering. Filtering Sampled Continuous-Time Signals.
7. z-Transforms.
Definition of the z-Transform. The z-Transform and Linear Systems. Properties of the z-Transform. The z-Transform as an Operator. Convolution and the z-Transform. Relationship between the z -Domain and the w-Domain. Useful Filters. Practical Bandpass Filter Design. Properties of Linear Phase Filters.
8. IIR Filters.
The General IIR Difference Equation. Time-Domain Response. System Function of an IIR Filter. Poles and Zeros. Frequency Response of an IIR Filter. Three Domains. The Inverse z-Transform and Some Applications. Steady-State Response and Stability. Second-Order Filters. Frequency Response of Second-Order IIR Filter. Example of an IIR Lowpass Filter.
9. Continuous-Time Signals and LTI Systems.
Continuous-Time Signals. The Unit Impulse. Continuous-Time Systems. Linear Time-Invariant Systems. Impulse Responses of Basic LTI Systems. Convolution of Impulses. Evaluating Convolution Integrals. Properties of LTI Systems. Using Convolution to Remove Multipath Distortion.
10. The Frequency Response.
The Frequency Response Function for LTI Systems. Response to Real Sinusoidal Signals. Ideal Filters. Application of Ideal Filters. Time-Domain or Frequency-Domain?
11. Continuous-Time Fourier Transform.
Definition of the Fourier Transform. The Fourier Transform and the Spectrum. Existence and Convergence of the Fourier Transform. Examples of Fourier Transform Pairs. Properties of Fourier Transform Pairs. The Convolution Property. Basic LTI Systems. The Multiplication Property. Table of Fourier Transform Properties and Pairs. Using the Fourier Transform for Multipath Analysis.
12. Filtering, Modulation, and Sampling.
Linear Time-Invariant Systems. Sinewave Amplitude Modulation. Sampling and Reconstruction.
13. Computing the Spectrum.
Finite Fourier Sum. Too Many Fourier Transforms? Time-windowing. Analysis of a Sum of Sinusoids. Discrete Fourier Transform. Spectrum Analysis of Finite-Length Signals. Spectrum Analysis of Periodic Signals. The Spectrogram. The Fast Fourier Transform (FFT).
Appendix A: Complex Numbers.
Notation for Complex Numbers. Euler's Formula. Algebraic Rules for Complex Numbers. Geometric Views of complex Operations. Powers and Roots.
Appendix B: Programming in MATLAB.
MATLAB Help. Matrix Operations and Variables. Plots and Graphics. Programming Constructs. MATLAB Scripts. Writing a MATLAB Function. Programming Tips.
Appendix C: Laboratory Projects.
Introduction to MATLAB. Encoding and Decoding Touch-Tone Signals. Two Convolution GUIs.
Appendix D: CD-ROM Demos.
Index.