Synopses & Reviews
"This essential companion volume to Chaitin's highly successful ""The Limits of Mathematics"", also published by Springer, gives a brilliant historical survey of the work of this century on the foundations of mathematics, in which the author was a major participant. The Unknowable is a very readable and concrete introduction to Chaitin's ideas, and it includes a detailed explanation of the programming language used by Chaitin in both volumes. It will enable computer users to interact with the author's proofs and discover for themselves how they work. The software for The Unknowable can be downloaded from the author's Web site. "
Synopsis
This essential companion volume to Chaitin's highly successful "The Limits of Mathematics", also published by Springer, gives a brilliant historical survey of the work of this century on the foundations of mathematics, in which the author was a major participant. The Unknowable is a very readable and concrete introduction to Chaitin's ideas, and it includes a detailed explanation of the programming language used by Chaitin in both volumes. It will enable computer users to interact with the author's proofs and discover for themselves how they work. The software for The Unknowable can be downloaded from the author's Web site.
Synopsis
This essential companion to Chaitins highly successful The Limits of Mathematics, gives a brilliant historical survey of important work on the foundations of mathematics. The Unknowable is a very readable introduction to Chaitins ideas, and includes software (on the authors website) that will enable users to interact with the authors proofs. "Chaitins new book, The Unknowable, is a welcome addition to his oeuvre. In it he manages to bring his amazingly seminal insights to the attention of a much larger audience His work has deserved such treatment for a long time." JOHN ALLEN PAULOS, AUTHOR OF ONCE UPON A NUMBER
Table of Contents
I. A Hundred Years of Controversy Regarding the Foundations of Mathematics.- II. LISP: A Formalism for Expressing Mathematical Algorithms.- III. Gödel's Proof of his Incompleteness Theorem.- IV. Turing's Proof of the Unsolvability of the Halting Problem.- V. My Proof that You Can Show that a LISP Expression is Elegant.- VI. Information & Randomness: A Survey of Algorithmic Information Theory.- VII. Mathematics in the Third Millennium?- Bibliography.