Synopses & Reviews
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics.
The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth.
This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Review
"The mathematical approach taken by the authors, as originally initiated by C. Caratheodory on the advice of Max Born, results in a book that makes a fundamental contribution to the field. The main emphasis is on the notion of large-scale dynamical systems applied to the multitude of small objects contained in the macroscale description. Indeed, thermodynamics is the dynamics of an extremely large number of objects numbering on the order of Avogadro's number. That some definite results arise from that setting is the marvel of it all."--Gérard A. Maugin, IEEE Control Systems
Review
"This is an original theory with many attractive features and which captures the known statements from classical thermodynamics, avoiding at the same time imprecise formulations. The techniques are based on dynamical systems and control theory, which is unusual in the field, but the presentation is precise and well crafted."--Manuel Portilheiro, Mathematical Reviews
Review
The mathematical approach taken by the authors, as originally initiated by C. Caratheodory on the advice of Max Born, results in a book that makes a fundamental contribution to the field. The main emphasis is on the notion of large-scale dynamical systems applied to the multitude of small objects contained in the macroscale description. Indeed, thermodynamics is the dynamics of an extremely large number of objects numbering on the order of Avogadro's number. That some definite results arise from that setting is the marvel of it all. Gérard A. Maugin
Review
This is an original theory with many attractive features and which captures the known statements from classical thermodynamics, avoiding at the same time imprecise formulations. The techniques are based on dynamical systems and control theory, which is unusual in the field, but the presentation is precise and well crafted. IEEE Control Systems
Review
Wassim Haddad, Winner of the 2014 Pendray Aerospace Literature Award, American Institute of Aeronautics and Astronautics
Synopsis
"This is an original contribution to the important, but very diverse, field of thermodynamics. The book's self-contained system-theoretic approach makes it accessible to a wide audience of readers."
--Jan Willems, University of Gronigen"This is a truly original and fundamental contribution to the field of thermodynamics. It will make a lasting contribution to the literature."--Naira Hovakimyan, Virginia Polytechnic Institute and State University
Synopsis
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics.
The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth.
This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Synopsis
"This is an original contribution to the important, but very diverse, field of thermodynamics. The book's self-contained system-theoretic approach makes it accessible to a wide audience of readers."--Jan Willems, University of Gronigen
"This is a truly original and fundamental contribution to the field of thermodynamics. It will make a lasting contribution to the literature."--Naira Hovakimyan, Virginia Polytechnic Institute and State University
Synopsis
This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics.
The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth.
This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.
Synopsis
"This is an original contribution to the important, but very diverse, field of thermodynamics. The book's self-contained system-theoretic approach makes it accessible to a wide audience of readers."--Jan Willems, University of Gronigen
"This is a truly original and fundamental contribution to the field of thermodynamics. It will make a lasting contribution to the literature."--Naira Hovakimyan, Virginia Polytechnic Institute and State University
About the Author
Wassim M. Haddad is Professor of Aerospace Engineering at the Georgia Institute of Technology. VijaySekhar Chellaboina is Associate Professor in the Department of Mechanical, Aerospace, and Biomedical Engineering at the University of Tennessee, Knoxville. Sergey G. Nersesov is a Ph.D. student in aerospace engineering at Georgia Institute of Technology.
Table of Contents
Preface ix
Chapter 1: Introduction 1
1.1 An Overview of Thermodynamics 1
1.2 System Thermodynamics 11
1.3 A Brief Outline of the Monograph 14
Chapter 2: Dynamical System Theory 17
2.1 Notation, Definitions, and Mathematical Preliminaries 17
2.2 Stability Theory for Nonnegative Dynamical Systems 20
2.3 Reversibility, Irreversibility, Recoverability, and Irrecoverability 27
2.4 Reversible Dynamical Systems, Volume-Preserving Flows, and Poincaré Recurrence 34
Chapter 3: A Systems Foundation for Thermodynamics 45
3.1 Introduction 45
3.2 Conservation of Energy and the First Law of Thermodynamics 46
3.3 Entropy and the Second Law of Thermodynamics 55
3.4 Ectropy 72
3.5 Semistability, Energy Equipartition, Irreversibility, and the Arrow of Time 81
3.6 Entropy Increase and the Second Law of Thermodynamics 89
3.7 Interconnections of Thermodynamic Systems 91
3.8 Monotonicity of System Energies in Thermodynamic Processes 98
Chapter 4: Temperature Equipartition and the Kinetic Theory of Gases
103
4.1 Semistability and Temperature Equipartition 103
4.2 Boltzmann Thermodynamics 110
Chapter 5: Work, Heat, and the Carnot Cycle 115
5.1 On the Equivalence of Work and Heat: The First Law Revisited 115
5.2 The Carnot Cycle and the Second Law of Thermodynamics 126
Chapter 6: Thermodynamic Systems with Linear Energy Exchange 131
6.1 Linear Thermodynamic System Models 131
6.2 Semistability and Energy Equipartition in Linear Thermodynamic Models 136
Chapter 7: Continuum Thermodynamics 141
7.1 Conservation Laws in Continuum Thermodynamics 141
7.2 Entropy and Ectropy for Continuum Thermodynamics 148
7.3 Semistability and Energy Equipartition in Continuum Thermo-dynamics 160
Chapter 8: Conclusion 169
Bibliography 175
Index 185